Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Quantifying The Basal Conditions Of A Mountain Glacier Using A Targeted Full-Waveform Inversion: Bench Glacier, Alaska, Usa, E. Babcock, J. Bradford Dec 2014

Quantifying The Basal Conditions Of A Mountain Glacier Using A Targeted Full-Waveform Inversion: Bench Glacier, Alaska, Usa, E. Babcock, J. Bradford

John H. Bradford

Glacier dynamics are inextricably linked to the basal conditions of glaciers. Seismic reflection methods can image the glacier bed under certain conditions. However, where a seismically thin layer of material is present at the bed, traditional analyses may fail to fully characterize bed properties. We use a targeted full-waveform inversion algorithm to quantify the basal-layer parameters of a mountain glacier: thickness (d), P-wave velocity (α) and density (ρ). We simultaneously invert for the seismic quality factor (Q) of the bulk glacier ice. The inversion seeks to minimize the difference between the data and a one-dimensional reflectivity algorithm using a gradient-based …


Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part I: Temperature, Eugene C. Cordero, Steven A. Mauget Dec 2014

Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part I: Temperature, Eugene C. Cordero, Steven A. Mauget

Faculty Publications, Meteorology and Climate Science

The optimal ranking regime (ORR) method was used to identify intradecadal to multidecadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output—a time series’ most significant nonoverlapping periods of high or low rankings—makes it possible to graphically identify common temporal breakpoints and spatial patterns of IMD variability in the analyses of 102 climate division temperature series. This approach is also applied to annual Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) climate indices, a Northern Hemisphere annual temperature (NHT) series, and divisional annual and seasonal temperature data during …


Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part Ii: Precipitation And Streamflow, Steven A. Mauget, Eugene C. Cordero Dec 2014

Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part Ii: Precipitation And Streamflow, Steven A. Mauget, Eugene C. Cordero

Faculty Publications, Meteorology and Climate Science

In Part I of this paper, the optimal ranking regime (ORR) method was used to identify intradecadal to multidecadal (IMD) regimes in U.S. climate division temperature data during 1896–2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. Water-year mean streamflow rankings at 125 U.S. Hydro-Climatic Data Network gauge stations are also evaluated during 1939–2011. The precipitation and streamflow regimes identified are compared with ORR-derived regimes in the Pacific decadal oscillation (PDO), the Atlantic multidecadal oscillation (AMO), and indices derived from gridded SST anomaly (SSTA) analysis data. Using a graphic display approach …


Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part I: Temperature, Eugene C. Cordero, Steven A. Mauget Dec 2014

Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part I: Temperature, Eugene C. Cordero, Steven A. Mauget

Eugene C. Cordero

The optimal ranking regime (ORR) method was used to identify intradecadal to multidecadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output—a time series’ most significant nonoverlapping periods of high or low rankings—makes it possible to graphically identify common temporal breakpoints and spatial patterns of IMD variability in the analyses of 102 climate division temperature series. This approach is also applied to annual Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) climate indices, a Northern Hemisphere annual temperature (NHT) series, and divisional annual and seasonal temperature data during …


Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part Ii: Precipitation And Streamflow, Steven A. Mauget, Eugene C. Cordero Dec 2014

Optimal Ranking Regime Analysis Of Intra- To Multidecadal U.S. Climate Variability. Part Ii: Precipitation And Streamflow, Steven A. Mauget, Eugene C. Cordero

Eugene C. Cordero

In Part I of this paper, the optimal ranking regime (ORR) method was used to identify intradecadal to multidecadal (IMD) regimes in U.S. climate division temperature data during 1896–2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. Water-year mean streamflow rankings at 125 U.S. Hydro-Climatic Data Network gauge stations are also evaluated during 1939–2011. The precipitation and streamflow regimes identified are compared with ORR-derived regimes in the Pacific decadal oscillation (PDO), the Atlantic multidecadal oscillation (AMO), and indices derived from gridded SST anomaly (SSTA) analysis data. Using a graphic display approach …


Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar Sep 2014

Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar

Faculty Publications

We study the single-orbital Hubbard model on the 1/5-depleted square-lattice geometry, which arises in such diverse systems as the spin-gap magnetic insulator CaV4O9 and ordered-vacancy iron selenides, presenting new issues regarding the origin of both magnetic ordering and superconductivity in these materials. We find a rich phase diagram that includes a plaquette singlet phase, a dimer singlet phase, a Néel and a block-spin antiferromagnetic phase, and stripe phases. Quantum Monte Carlo simulations show that the dominant pairing correlations at half filling change character from d wave in the plaquette phase to extended s wave upon transition to the Néel phase. …


Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry Jun 2014

Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry

Faculty Publications

We implement a highly efficient strong-coupling expansion for the Green's function of the Hubbard model. In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We compute the finite-temperature Green's function analytically in the momentum and Matsubara frequency space as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at temperatures lower than, or of the …


Calculating Ellipse Overlap Areas, Gary Hughes, Mohcine Chraibi Jan 2014

Calculating Ellipse Overlap Areas, Gary Hughes, Mohcine Chraibi

Gary B. Hughes

We present an approach for finding the overlap area between two ellipses that does not rely on proxy curves. The Gauss-Green formula is used to determine a segment area between two points on an ellipse. Overlap between two ellipses is calculated by combining the areas of appropriate segments and polygons in each ellipse. For four of the ten possible orientations of two ellipses, the method requires numerical determination of transverse intersection points. Approximate intersection points can be determined by solving the two implicit ellipse equations simultaneously. Alternative approaches for finding transverse intersection points are available using tools from algebraic geometry, …


Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry Jan 2014

Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry

Ehsan Khatami

We implement a highly efficient strong-coupling expansion for the Green's function of the Hubbard model. In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We compute the finite-temperature Green's function analytically in the momentum and Matsubara frequency space as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at temperatures lower than, or of the …


Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar Jan 2014

Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar

Ehsan Khatami

We study the single-orbital Hubbard model on the 1/5-depleted square-lattice geometry, which arises in such diverse systems as the spin-gap magnetic insulator CaV4O9 and ordered-vacancy iron selenides, presenting new issues regarding the origin of both magnetic ordering and superconductivity in these materials. We find a rich phase diagram that includes a plaquette singlet phase, a dimer singlet phase, a Néel and a block-spin antiferromagnetic phase, and stripe phases. Quantum Monte Carlo simulations show that the dominant pairing correlations at half filling change character from d wave in the plaquette phase to extended s wave upon transition to the Néel phase. …