Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Senior Theses

Self-organized criticality

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor May 2019

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor

Senior Theses

Complexity is prevalent both in natural and in human-made systems, yet is not well understood quantitatively. Qualitatively, complexity describes a phenomena in which a system composed of individual pieces, each having simple interactions with one another, results in interesting bulk properties that would otherwise not exist. One example of a complex biological system is the bird flock, in particular, a starling murmuration. Starlings are known to move in the direction of their neighbors and avoid collisions with fellow starlings, but as a result of these simple movement choices, the flock as a whole tends to exhibit fluid-like movements and form …


Expanded Parameters In The Self-Organized Critical Forest Fire Model, Riley Self Jun 2016

Expanded Parameters In The Self-Organized Critical Forest Fire Model, Riley Self

Senior Theses

The forest fire model has been used to test the theory of Self-Organized Criticality as a model of complexity. The goal is to search for scale invariance in randomly generated forest fires using a computer simulation. In a previous model by B. Drossel and F. Schwabl,1 power-law behavior was seen when the nearest neighbors to a tree on fire catch on fire, and it has been assumed that if further trees also catch fire, then it will still exhibit self-organized criticality, showing scale invariance. Testing this assumption aids to the exploration of the applicability of self-organized criticality because the …


Protein Folding & Self-Organized Criticality, Arun Bajracharya May 2016

Protein Folding & Self-Organized Criticality, Arun Bajracharya

Senior Theses

Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is unknown. Experimental studies of the folding process are difficult as proteins are made of more than one subunit and possess a high degree of conformational flexibility. Theoretically, self-organized criticality (SOC) has provided a framework for understanding complex systems in various scientific disciplines through scale invariance and the associated "fractal" power law behavior. Evidence of this criticality phenomena has been found in neural systems, cell cultures, and anesthetized …


Does Protein Folding Exhibit Self-Organized Criticality?, Addison Wisthoff May 2014

Does Protein Folding Exhibit Self-Organized Criticality?, Addison Wisthoff

Senior Theses

Proteins are known to fold into tertiary structures that determine their functionality in living organisms. By understanding the general features of this folding process, that are independent of specific proteins, folding can be better understood. Self-organized critical systems exhibit behavior that scales with system size. In this project, I wrote a simulation of a simplistic three-dimensional cubic lattice protein model. The model consisted of only two different types of amino acids, one being hydrophobic and the other hydrophilic, known as the HP model. To identify self-organized criticality in proteins, there must be clear signs of power law behavior in the …