Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mathematics, Physics, and Computer Science Faculty Articles and Research

Quantum foundations

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Improving The Proof Of The Born Rule Using A Physical Requirement On The Dynamics Of Quantum Particles, Yakir Aharonov, Tomer Shushi Feb 2024

Improving The Proof Of The Born Rule Using A Physical Requirement On The Dynamics Of Quantum Particles, Yakir Aharonov, Tomer Shushi

Mathematics, Physics, and Computer Science Faculty Articles and Research

We propose a complete proof of the Born rule using an additional postulate stating that for a short enough time Δt between two measurements, a property of a particle will keep its values fixed. This dynamical postulate allows us to produce the Born rule in its explicit form by improving the result given in [1]. While the proposed postulate is still not part of the quantum mechanics postulates, every experiment obeys it, and it cannot be deduced using the standard postulates of quantum mechanics.


Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism, Ken Wharton, Emily Adlam Aug 2023

Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism, Ken Wharton, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

For any experiment with two entangled photons, some joint measurement outcomes can have zero probability for a precise choice of basis. These perfect anti-correlations would seem to be a purely quantum phenomenon. It is, therefore, surprising that these very anti-correlations are also evident when the input to the same experiment is analyzed via classical electromagnetic theory. Demonstrating this quantum–classical connection for arbitrary two-photon states and analyzing why it is successful motivates alternative perspectives concerning entanglement, the path integral, and other topics in quantum foundations.


What Is Nonclassical About Uncertainty Relations?, Lorenzo Catani, Matthew S. Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens Dec 2022

What Is Nonclassical About Uncertainty Relations?, Lorenzo Catani, Matthew S. Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

Uncertainty relations express limits on the extent to which the outcomes of distinct measurements on a single state can be made jointly predictable. The existence of nontrivial uncertainty relations in quantum theory is generally considered to be a way in which it entails a departure from the classical worldview. However, this perspective is undermined by the fact that there exist operational theories which exhibit nontrivial uncertainty relations but which are consistent with the classical worldview insofar as they admit of a generalized-noncontextual ontological model. This prompts the question of what aspects of uncertainty relations, if any, cannot be realized in …


Two Roads To Retrocausality, Emily Adlam Oct 2022

Two Roads To Retrocausality, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In recent years the quantum foundations community has seen increasing interest in the possibility of using retrocausality as a route to rejecting the conclusions of Bell’s theorem and restoring locality to quantum physics. On the other hand, it has also been argued that accepting nonlocality leads to a form of retrocausality. In this article we seek to elucidate the relationship between retrocausality and locality. We begin by providing a brief schema of the various ways in which violations of Bell’s inequalities might lead us to consider some form of retrocausality. We then consider some possible motivations for using retrocausality to …


The Operational Choi-Jamio Lkowski Isomorphism, Emily Adlam Sep 2020

The Operational Choi-Jamio Lkowski Isomorphism, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, I use an operational formulation of the Choi–Jamiołkowski isomorphism to explore an approach to quantum mechanics in which the state is not the fundamental object. I first situate this project in the context of generalized probabilistic theories and argue that this framework may be understood as a means of drawing conclusions about the intratheoretic causal structure of quantum mechanics which are independent of any specific ontological picture. I then give an operational formulation of the Choi–Jamiołkowski isomorphism and show that, in an operational theory which exhibits this isomorphism, several features of the theory which are usually regarded …


Noncontextuality Inequalities From Antidistinguishability, Matthew S. Leifer, Cristhiano Duarte Jun 2020

Noncontextuality Inequalities From Antidistinguishability, Matthew S. Leifer, Cristhiano Duarte

Mathematics, Physics, and Computer Science Faculty Articles and Research

Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states, i.e., their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality inequalities. The Yu-Oh 13-ray noncontextuality inequality can be rederived and generalized as an instance of our antidistinguishability method. For some sets of states, the antidistinguishability method gives tighter bounds on noncontextual models than just considering orthogonality, and the Hadamard states provide an example of this. We also derive noncontextuality inequalities based on mutually unbiased bases and symmetric informationally complete positive operator-valued measures. Antidistinguishability based inequalities were initially discovered as overlap bounds for the …


Spooky Action At A (Temporal) Distance, Emily Adlam Jan 2018

Spooky Action At A (Temporal) Distance, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

Since the discovery of Bell’s theorem, the physics community has come to take seriously the possibility that the universe might contain physical processes which are spatially nonlocal, but there has been no such revolution with regard to the possibility of temporally nonlocal processes. In this article, we argue that the assumption of temporal locality is actively limiting progress in the field of quantum foundations. We investigate the origins of the assumption, arguing that it has arisen for historical and pragmatic reasons rather than good scientific ones, then explain why temporal locality is in tension with relativity and review some recent …