Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Physical Sciences and Mathematics

Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan Dec 2023

Studying The Impact Of The Geospace Environment On Solar Lithosphere Coupling And Earthquake Activity, Dimitar Ouzounov, Galina Khachikyan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In solar–terrestrial physics, there is an open question: does a geomagnetic storm affect earthquakes? We expand research in this direction, analyzing the seismic situation after geomagnetic storms (GMs) accompanied by the precipitation of relativistic electrons from the outer radiation belt to form an additional radiation belt (RB) around lower geomagnetic lines. We consider four widely discussed cases in the literature for long-lived (weeks, months) RBs due to GMs and revealed that the 1/GMs 24 March 1991 with a new RB at L~2.6 was followed by an M7.0 earthquake in Alaska, 30 May 1991, near footprint L = 2.69; the 2/GMs …


Weak Measurements And Quantum-To-Classical Transitions In Free Electron–Photon Interactions, Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov Nov 2023

Weak Measurements And Quantum-To-Classical Transitions In Free Electron–Photon Interactions, Yiming Pan, Eliahu Cohen, Ebrahim Karimi, Avraham Gover, Norbert Schönenberger, Tomáš Chlouba, Kangpeng Wang, Saar Nehemia, Peter Hommelhoff, Ido Kaminer, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

How does the quantum-to-classical transition of measurement occur? This question is vital for both foundations and applications of quantum mechanics. Here, we develop a new measurement-based framework for characterizing the classical and quantum free electron–photon interactions and then experimentally test it. We first analyze the transition from projective to weak measurement in generic light–matter interactions and show that any classical electron-laserbeam interaction can be represented as an outcome of weak measurement. In particular, the appearance of classical point-particle acceleration is an example of an amplified weak value resulting from weak measurement. A universal factor, exp(-Γ2/2) , quantifies the …


Certain Invertible Operator-Block Matrices Induced By C*-Algebras And Scaled Hypercomplex Numbers, Daniel Alpay, Ilwoo Choo Oct 2023

Certain Invertible Operator-Block Matrices Induced By C*-Algebras And Scaled Hypercomplex Numbers, Daniel Alpay, Ilwoo Choo

Mathematics, Physics, and Computer Science Faculty Articles and Research

The main purposes of this paper are (i) to enlarge scaled hypercomplex structures to operator-valued cases, where the operators are taken from a C*-subalgebra of an operator algebra on a separable Hilbert space, (ii) to characterize the invertibility conditions on the operator-valued scaled-hypercomplex structures of (i), (iii) to study relations between the invertibility of scaled hypercomplex numbers, and that of operator-valued cases of (ii), and (iv) to confirm our invertibility of (ii) and (iii) are equivalent to the general invertibility of (2×2)-block operator matrices.


The General Theory Of Superoscillations And Supershifts In Several Variables, Fabrizio Colombo, Stefano Pinton, Irene Sabadini, Daniele C. Struppa Oct 2023

The General Theory Of Superoscillations And Supershifts In Several Variables, Fabrizio Colombo, Stefano Pinton, Irene Sabadini, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we describe a general method to generate superoscillatory functions of several variables starting from a superoscillating sequence of one variable. Our results are based on the study of suitable infinite order differential operators acting on holomorphic functions with growth conditions of exponential type. Additional constraints are required when dealing with infinite order differential operators whose symbol is a function that is holomorphic in some open set, but not necessarily entire. The results proved for superoscillating sequences in several variables are extended to sequences of supershifts in several variables.


Application Of Model-Based Time Series Prediction Of Infrared Long-Wave Radiation Data For Exploring The Precursory Patterns Associated With The 2021 Madoi Earthquake, Jingye Zhang, Ke Sun, Junqing Zhu, Ning Mao, Dimitar Ouzounov Sep 2023

Application Of Model-Based Time Series Prediction Of Infrared Long-Wave Radiation Data For Exploring The Precursory Patterns Associated With The 2021 Madoi Earthquake, Jingye Zhang, Ke Sun, Junqing Zhu, Ning Mao, Dimitar Ouzounov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Taking the Madoi MS 7.4 earthquake of 21 May 2021 as an example, this paper proposes using time series prediction models to predict the outgoing long-wave radiation (OLR) anomalies and study short-term pre-earthquake signals. Five time series prediction models, including autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM), were trained with the OLR time series data of the aseismic moments in the 5° × 5° spatial range around the epicenter. The model with the highest prediction accuracy was selected to retrospectively predict the OLR values during the aseismic period and before the earthquake in the area. It …


Superoscillations And Fock Spaces, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa Sep 2023

Superoscillations And Fock Spaces, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we use techniques in Fock spaces theory and compute how the Segal-Bargmann transform acts on special wave functions obtained by multiplying superoscillating sequences with normalized Hermite functions. It turns out that these special wave functions can be constructed also by computing the approximating sequence of the normalized Hermite functions. First, we start by treating the case when a superoscillating sequence is multiplied by the Gaussian function. Then, we extend these calculations to the case of normalized Hermite functions leading to interesting relations with Weyl operators. In particular, we show that the Segal-Bargmann transform maps superoscillating sequences onto …


Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens Aug 2023

Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

Interference phenomena are often claimed to resist classical explanation. However, such claims are undermined by the fact that the specific aspects of the phenomenology upon which they are based can in fact be reproduced in a noncontextual ontological model [Catani et al., arXiv:2111.13727]. This raises the question of what other aspects of the phenomenology of interference do in fact resist classical explanation. We answer this question by demonstrating that the most basic quantum wave-particle duality relation, which expresses the precise tradeoff between path distinguishability and fringe visibility, cannot be reproduced in any noncontextual model. We do this by …


Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism, Ken Wharton, Emily Adlam Aug 2023

Entangled Photon Anti-Correlations Are Evident From Classical Electromagnetism, Ken Wharton, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

For any experiment with two entangled photons, some joint measurement outcomes can have zero probability for a precise choice of basis. These perfect anti-correlations would seem to be a purely quantum phenomenon. It is, therefore, surprising that these very anti-correlations are also evident when the input to the same experiment is analyzed via classical electromagnetic theory. Demonstrating this quantum–classical connection for arbitrary two-photon states and analyzing why it is successful motivates alternative perspectives concerning entanglement, the path integral, and other topics in quantum foundations.


Conservation Laws And The Foundations Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich Jul 2023

Conservation Laws And The Foundations Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

In a recent paper, [Y. Aharonov, S. Popescu, D. Rohrlich, Proc. Natl. Acad. Sci. U.S.A.118 e1921529118 (2021)], it was argued that while the standard definition of conservation laws in quantum mechanics, which is of a statistical character, is perfectly valid, it misses essential features of nature and it can and must be revisited to address the issue of conservation/nonconservation in individual cases. Specifically, in the above paper, an experiment was presented in which it can be proven that in some individual cases, energy is not conserved, despite being conserved statistically. It was felt however that this is worrisome and …


Quantum Reality With Negative-Mass Particles, Mordecai Waegell, Eliahu Cohen, Avshalom C. Elitzur, Jeff Tollaksen, Yakir Aharonov Jul 2023

Quantum Reality With Negative-Mass Particles, Mordecai Waegell, Eliahu Cohen, Avshalom C. Elitzur, Jeff Tollaksen, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Physical interpretations of the time-symmetric formulation of quantum mechanics, due to Aharonov, Bergmann, and Lebowitz are discussed in terms of weak values. The most direct, yet somewhat naive, interpretation uses the time-symmetric formulation to assign eigenvalues to unmeasured observables of a system, which results in logical paradoxes, and no clear physical picture. A top–down ontological model is introduced that treats the weak values of observables as physically real during the time between pre- and post-selection (PPS), which avoids these paradoxes. The generally delocalized rank-1 projectors of a quantum system describe its fundamental ontological elements, and the highest-rank projectors corresponding to …


Quantum Stirling Heat Engine Operating In Finite Time, Debmalya Das, George Thomas, Andrew N. Jordan Jul 2023

Quantum Stirling Heat Engine Operating In Finite Time, Debmalya Das, George Thomas, Andrew N. Jordan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In a quantum Stirling heat engine, the heat exchanged with two thermal baths is partly utilized for performing work by redistributing the energy levels of the working substance. We analyze the thermodynamics of a quantum Stirling engine operating in finite time. We develop a model in which a time-dependent potential barrier changes the energy-level structure of the working substance. The process takes place under a constant interaction with the thermal bath. We further show that in the limit of slow operation of the cycle and low temperature, the efficiency of such an engine approaches Carnot efficiency. We also show that …


An Extension Of The Complex–Real (C–R) Calculus To The Bicomplex Setting, With Applications, Daniel Alpay, Kamal Diki, Mihaela Vajiac Jul 2023

An Extension Of The Complex–Real (C–R) Calculus To The Bicomplex Setting, With Applications, Daniel Alpay, Kamal Diki, Mihaela Vajiac

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we extend notions of complex ℂ−ℝ-calculus to the bicomplex setting and compare the bicomplex polyanalytic function theory to the classical complex case. Applications of this theory include two bicomplex least mean square algorithms, which extend classical real and complex least mean square algorithms.


Monitoring Dam Stability Using Psi And Sbas Analysis, Rejoice Thomas, Wenzhao Li, Shahryar Fazli, Nikolay Grisel Todorov, Hesham El-Askary Jul 2023

Monitoring Dam Stability Using Psi And Sbas Analysis, Rejoice Thomas, Wenzhao Li, Shahryar Fazli, Nikolay Grisel Todorov, Hesham El-Askary

Mathematics, Physics, and Computer Science Faculty Articles and Research

Water preservation and maximization of its efficient use is key in areas facing water scarcity like California. One of the most important resources available to us are dams, which are useful to address a variety of needs like water supply, flood control, and maintaining environmental flows. However, if not managed properly, dams can be disastrous to humans and wildlife alike, different water species, habitats, and even impact water quality for a region. In this context, we have used newer Synthetic Aperture Radar Interferometry techniques like Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) to estimate the displacement rates at …


Schur Analysis And Discrete Analytic Functions: Rational Functions And Co-Isometric Realizations, Daniel Alpay, Dan Volok Jun 2023

Schur Analysis And Discrete Analytic Functions: Rational Functions And Co-Isometric Realizations, Daniel Alpay, Dan Volok

Mathematics, Physics, and Computer Science Faculty Articles and Research

We define and study rational discrete analytic functions and prove the existence of a coisometric realization for discrete analytic Schur multipliers.


Discrete Wiener Algebra In The Bicomplex Setting, Spectral Factorization With Symmetry, And Superoscillations, Daniel Alpay, Izchak Lewkowicz, Mihaela Vajiac Jun 2023

Discrete Wiener Algebra In The Bicomplex Setting, Spectral Factorization With Symmetry, And Superoscillations, Daniel Alpay, Izchak Lewkowicz, Mihaela Vajiac

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we present parallel theories on constructing Wiener algebras in the bicomplex setting. With the appropriate symmetry condition, the bicomplex matrix valued case can be seen as a complex valued case and, in this matrix valued case, we make the necessary connection between bicomplex analysis and complex analysis with symmetry. We also write an application to superoscillations in this case.


A Strong-Type Furstenberg–Sárközy Theorem For Sets Of Positive Measure, Polona Durcik, Vjekoslav Kovač, Mario Stipčić May 2023

A Strong-Type Furstenberg–Sárközy Theorem For Sets Of Positive Measure, Polona Durcik, Vjekoslav Kovač, Mario Stipčić

Mathematics, Physics, and Computer Science Faculty Articles and Research

For every β ∈ (0,∞), β ≠ 1, we prove that a positive measure subset A of the unit square contains a point (x0, y0) such that A nontrivially intersects curves y − y0 = a(x −x0)β for a whole interval I ⊆ (0,∞) of parameters a ∈ I . A classical Nikodym set counterexample prevents one to take β = 1, which is the case of straight lines. Moreover, for a planar set A of positive density, we show that the interval I can be arbitrarily large on the logarithmic scale. These results can …


Aharonov–Bohm Effect With An Effective Complex-Valued Vector Potential, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell May 2023

Aharonov–Bohm Effect With An Effective Complex-Valued Vector Potential, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell

Mathematics, Physics, and Computer Science Faculty Articles and Research

The interaction between a quantum charge and a dynamic source of a magnetic field is considered in the Aharonov–Bohm (AB) scenario. It is shown that, in weak interactions with a post-selection of the source, the effective vector potential is, generally, complex-valued. This leads to new experimental protocols to detect the AB phase before the source is fully encircled. While this does not necessarily change the nonlocal status of the AB effect, it brings new insights into it. Moreover, we discuss how these results might have consequences for the correspondence principle, making complex vector potentials relevant to the study of classical …


Operators Induced By Certain Hypercomplex Systems, Daniel Alpay, Ilwoo Choo May 2023

Operators Induced By Certain Hypercomplex Systems, Daniel Alpay, Ilwoo Choo

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper, we consider a family {Ht}t∈R of rings of hypercomplex numbers, indexed by the real numbers, which contain both the quaternions and the split-quaternions. We consider natural Hilbert-space representations {(C2, πt)}t∈R of the hypercomplex system {Ht}t∈R, and study the realizations πt(h) of hypercomplex numbers h ∈ Ht, as (2 × 2)-matrices acting on C2, for an arbitrarily fixed scale t ∈ R. Algebraic, operator-theoretic, spectral-analytic, and free-probabilistic properties of them are considered.


A Hörmander–Fock Space, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa May 2023

A Hörmander–Fock Space, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In a recent paper we used a basic decomposition property of polyanalytic functions of order 2 in one complex variable to characterize solutions of the classical ∂-problem for given analytic and polyanalytic data. Our approach suggested the study of a special reproducing kernel Hilbert space that we call the Hörmander-Fock space that will be further investigated in this paper. The main properties of this space are encoded in a specific moment sequence denoted by η= (ηn)n≥0 leading to a special entire function E(z) that is used to express the kernel function of the Hörmander-Fock space. We …


Balancing Functional Tradeoffs Between Protein Stability And Ace2 Binding In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic And Energetic Changes, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta May 2023

Balancing Functional Tradeoffs Between Protein Stability And Ace2 Binding In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic And Energetic Changes, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Evolutionary and functional studies suggested that the emergence of the Omicron variants can be determined by multiple fitness trade-offs including the immune escape, binding affinity for ACE2, conformational plasticity, protein stability and allosteric modulation. In this study, we systematically characterize conformational dynamics, structural stability and binding affinities of the SARS-CoV-2 Spike Omicron complexes with the host receptor ACE2 for BA.2, BA.2.75, XBB.1 and XBB.1.5 variants. We combined multiscale molecular simulations and dynamic analysis of allosteric interactions together with the ensemble-based mutational scanning of the protein residues and network modeling of epistatic interactions. This multifaceted computational study characterized molecular mechanisms and …


Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer Apr 2023

Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, I show how the Aharonov–Vaidman identity A|ψ>=<A⟩|ψ>+ΔA| ψA> can be used to prove relations between the standard deviations of observables in quantum mechanics. In particular, I review how it leads to a more direct and less abstract proof of the Robertson uncertainty relation ΔAΔB≥12|< [A,B]>| than the textbook proof. I discuss the relationship between these two proofs and show how the Cauchy–Schwarz inequality can be derived from the Aharonov–Vaidman identity. I give Aharonov–Vaidman based proofs of the Maccone–Pati uncertainty relations …


From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao Apr 2023

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric …


Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam Apr 2023

Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article we set out to understand the significance of the process matrix formalism and the quantum causal modelling programme for ongoing disputes about the role of causation in fundamental physics. We argue that the process matrix programme has correctly identified a notion of ‘causal order’ which plays an important role in fundamental physics, but this notion is weaker than the common-sense conception of causation because it does not involve asymmetry. We argue that causal order plays an important role in grounding more familiar causal phenomena. Then we apply these conclusions to the causal modelling programme within quantum foundations, …


Commutators On Fock Spaces, Daniel Alpay, Paula Cerejeiras, Uwe Kähler, Trevor Kling Apr 2023

Commutators On Fock Spaces, Daniel Alpay, Paula Cerejeiras, Uwe Kähler, Trevor Kling

Mathematics, Physics, and Computer Science Faculty Articles and Research

Given a weighted ℓ2 space with weights associated with an entire function, we consider pairs of weighted shift operators, whose commutators are diagonal operators, when considered as operators over a general Fock space. We establish a calculus for the algebra of these commutators and apply it to the general case of Gelfond–Leontiev derivatives. This general class of operators includes many known examples, such as classic fractional derivatives and Dunkl operators. This allows us to establish a general framework, which goes beyond the classic Weyl–Heisenberg algebra. Concrete examples for its application are provided.


The Temporal Asymmetry Of Influence Is Not Statistical, Emily Adlam Apr 2023

The Temporal Asymmetry Of Influence Is Not Statistical, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

We argue that the temporal asymmetry of influence is not merely the result of thermodynamics: it is a consequence of the fact that modal structure of the universe must admit only processes which cannot give rise to contradictions. We appeal to the process matrix formalism developed in the field of quantum foundations to characterise processes which are compatible with local free will whilst ruling out contradictions, and argue that this gives rise to ‘consistent chaining’ requirements that explain the temporal asymmetry of influence. We compare this view to the perspectival account of causation advocated by Price and Ramsey.


Coarse-Grained Molecular Simulations And Ensemble-Based Mutational Profiling Of Protein Stability In The Different Functional Forms Of The Sars-Cov-2 Spike Trimers: Balancing Stability And Adaptability In Ba.1, Ba.2 And Ba.2.75 Variants, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta Apr 2023

Coarse-Grained Molecular Simulations And Ensemble-Based Mutational Profiling Of Protein Stability In The Different Functional Forms Of The Sars-Cov-2 Spike Trimers: Balancing Stability And Adaptability In Ba.1, Ba.2 And Ba.2.75 Variants, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable …


Hörmander’S L2 -Method, ∂-Problem And Polyanalytic Function Theory In One Complex Variable, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa Mar 2023

Hörmander’S L2 -Method, ∂-Problem And Polyanalytic Function Theory In One Complex Variable, Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we consider the classical ∂-problem in the case of one complex variable both for analytic and polyanalytic data. We apply the decomposition property of polyanalytic functions in order to construct particular solutions of this problem and obtain new Hörmander type estimates using suitable powers of the Cauchy-Riemann operator. We also compute particular solutions of the ∂-problem for specific polyanalytic data such as the Itô complex Hermite polynomials and polyanalytic Fock kernels.


A Mathematical Framework For Operational Fine Tunings, Lorenzo Catani, Matthew Leifer Mar 2023

A Mathematical Framework For Operational Fine Tunings, Lorenzo Catani, Matthew Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the framework of ontological models, the inherently nonclassical features of quantum theory always seem to involve properties that are fine tuned, i.e. properties that hold at the operational level but break at the ontological level. Their appearance at the operational level is due to unexplained special choices of the ontological parameters, which is what we mean by a fine tuning. Famous examples of such features are contextuality and nonlocality. In this article, we develop a theory-independent mathematical framework for characterizing operational fine tunings. These are distinct from causal fine tunings – already introduced by Wood and Spekkens in [NJP,17 …


The Structure Of Locally Integral Involutive Po-Monoids And Semirings, José Gil-Férez, Peter Jipsen, Siddhartha Lodhia Mar 2023

The Structure Of Locally Integral Involutive Po-Monoids And Semirings, José Gil-Férez, Peter Jipsen, Siddhartha Lodhia

Mathematics, Physics, and Computer Science Faculty Articles and Research

We show that every locally integral involutive partially ordered monoid (ipo-monoid) A = (A,⩽, ·, 1,∼,−), and in particular every locally integral involutive semiring, decomposes in a unique way into a family {Ap : p ∈ A+} of integral ipo-monoids, which we call its integral components. In the semiring case, the integral components are semirings. Moreover, we show that there is a family of monoid homomorphisms Φ = {φpq : Ap → Aq : p ⩽ q}, indexed on the positive cone (A+,⩽), so that the structure of A can be recovered as a glueing R ΦAp of its integral …


High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian Feb 2023

High-Frequency Diode Effect In Superconducting Nb3Sn Microbridges, Sara Chahid, Serafim Teknowijoyo, Iris Mowgood, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

The superconducting diode effect has recently been reported in a variety of systems and different symmetry-breaking mechanisms have been examined. However, the frequency range of these potentially important devices still remains obscure. We investigated superconducting microbridges of Nb3Sn in out-of-plane magnetic fields; optimum magnetic fields of ∼10 mT generate ∼10% diode efficiency, while higher fields of ∼15–20 mT quench the effect. The diode changes its polarity with magnetic field reversal. We documented superconductive diode rectification at frequencies up to 100 kHz, the highest reported as of today. Interestingly, the bridge resistance during diode operation reaches a value that is a …