Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


A Recommendation System For Meta-Modeling: A Meta-Learning Based Approach, Can Cui, Mengqi Hu, Jeffery D. Weir, Teresa Wu Jan 2016

A Recommendation System For Meta-Modeling: A Meta-Learning Based Approach, Can Cui, Mengqi Hu, Jeffery D. Weir, Teresa Wu

Faculty Publications

Various meta-modeling techniques have been developed to replace computationally expensive simulation models. The performance of these meta-modeling techniques on different models is varied which makes existing model selection/recommendation approaches (e.g., trial-and-error, ensemble) problematic. To address these research gaps, we propose a general meta-modeling recommendation system using meta-learning which can automate the meta-modeling recommendation process by intelligently adapting the learning bias to problem characterizations. The proposed intelligent recommendation system includes four modules: (1) problem module, (2) meta-feature module which includes a comprehensive set of meta-features to characterize the geometrical properties of problems, (3) meta-learner module which compares the performance of instance-based …


Measurement And Simulation Of Laser-Induced Fluorescence From Nonequilibrium Ultracold Neutral Plasmas, A. Denning, Scott D. Bergeson, F. Robicheaux Jan 2009

Measurement And Simulation Of Laser-Induced Fluorescence From Nonequilibrium Ultracold Neutral Plasmas, A. Denning, Scott D. Bergeson, F. Robicheaux

Faculty Publications

We report measurements and simulations of laser-induced fluorescence in ultracold neutral plasmas. We focus on the earliest times, when the plasma equilibrium is evolving and before the plasma expands. In the simulation, the ions interact via the Yukawa potential in a small cell with wrapped boundary conditions. We solve the optical Bloch equation for each ion in the simulation as a function of time. Both the simulation and experiment show the initial increase in ion fluorescence, disorder-induced heating, and coherent oscillation of the rms ion velocity. Detailed modeling of the fluorescence signal makes it possible to use fluorescence spectroscopy to …


Time Step Truncation Error In Direct Simulation Monte Carlo, Alejandro Garcia, W. Wagner Jan 2000

Time Step Truncation Error In Direct Simulation Monte Carlo, Alejandro Garcia, W. Wagner

Faculty Publications

No abstract provided.


Comment On 'Simulation Of A Two-Dimensional Rayleigh-Bénard System Using The Direct Simulation Monte Carlo Method, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1995

Comment On 'Simulation Of A Two-Dimensional Rayleigh-Bénard System Using The Direct Simulation Monte Carlo Method, Alejandro Garcia, F. Baras, M. Malek Mansour

Faculty Publications

No abstract provided.


Direct Simulation Monte Carlo For Thin Film Bearings, Alejandro Garcia, B. Alder, F. J. Alexander Jan 1994

Direct Simulation Monte Carlo For Thin Film Bearings, Alejandro Garcia, B. Alder, F. J. Alexander

Faculty Publications

The direct simulation Monte Carlo (DSMC) scheme is used to study the gas flow under a read/write head positioned nanometers above a moving disk drive platter (the slider bearing problem). In most cases, impressive agreement is found between the particle-based simulation and numerical solutions of the continuum hydrodynamic Reynolds equation which has been corrected for slip. However, at very high platter speeds the gas is far from equilibrium, and the load capacity for the slider bearing cannot be accurately computed from the hydrodynamic pressure.