Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physical Sciences and Mathematics

Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb Aug 2022

Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb

Electronic Theses and Dissertations

Increasing concentrations of fluorinated aromatic compounds in surface water, groundwater, and soil pose threats to the environment. Fundamental studies that elucidate mechanisms of dehalogenation for C-X compounds (where X represents a halide) are required to develop effective remediation strategies. For halogenated benzenes, previously published research has suggested that the strength of the C-X bond is not rate-determining in the overall rate of dehalogenation. Instead, the rate-determining step has been hypothesized to be adsorption of the C-X compound onto the surface of a catalyst. Building on this hypothesis, in this work, we examine the reaction kinetics of fluorobenzene conversion to benzene, …


Synthesis And Evaluation Of Water-Dispersed Aryl-Gold Nanoparticles And Applications In Catalysis, Ahmad Al Ahmad Aug 2022

Synthesis And Evaluation Of Water-Dispersed Aryl-Gold Nanoparticles And Applications In Catalysis, Ahmad Al Ahmad

Electronic Theses and Dissertations

Gold nanoparticles have been used in environmental remediation as catalysts through biological and chemical redox reactions of many types of industrial waste including nitroarenes, organic dyes, carbon monoxide, and others. These reactions occur in harsh environmental conditions (e.g. changing temperature, presence of salts, extreme pH solutions) which require robust nanoparticles that can keep their activity and resist aggregation. This thesis describes the synthesis, characterization, and investigation of the catalytic activity of gold-aryl nanoparticles. Gold–aryl nanoparticles (AuNPs-COOH) fabricated using a mild reduction process of a molecular aryldiazonium gold(III) salt [HOOC-4-C6H4N≡N]AuCl4 showed high stability in the presence of high ionic strength salt, …


C-H On The Oxo Ferryl Wheel: Comparison Of Pyridine And Imidazole-Substituted Ligands For C-H Activation And Functionalization, Elizabeth Milem May 2022

C-H On The Oxo Ferryl Wheel: Comparison Of Pyridine And Imidazole-Substituted Ligands For C-H Activation And Functionalization, Elizabeth Milem

Electronic Theses and Dissertations

The selective and efficient transformation of hydrocarbon feedstocks is of high value for industry and research. While Shilov-type organometallic methods have facilitated this goal, systems designed after nature’s use of cheap and abundant iron-based enzymes are desired for wider-scale applications. This work establishes hydrocarbon oxidation efficiency of synthetic pyridine-based ligands (BPMEN, BPMPN) compared to commercially available TPA with in situ generated catalysts. Literature studies of traditionally synthesized BPMEN systems and initial in situ studies offered evidence for enhanced reactivity (TON) as compared to TPA. Expansion to a propyl backbone to produce BPMPN tested the increased chelate ring size’s impact on …


Electrochemical Characterization Of Surface-Immobilized Metal Nanostructures: Stability, Atomic Level Doping, Catalysis, And Sensing Applications., Badri Prasad Mainali Aug 2021

Electrochemical Characterization Of Surface-Immobilized Metal Nanostructures: Stability, Atomic Level Doping, Catalysis, And Sensing Applications., Badri Prasad Mainali

Electronic Theses and Dissertations

This dissertation has two main themes. The first theme involves voltammetric analysis of the stability of Au nanoparticles (NPs) under electrochemical and thermal treatment as a function of size, ligand stabilizer, and atomic composition. The second theme involves the use of Au NPs, electrophoretic deposition (EPD), and anodic stripping voltammetry (ASV) for electrochemical detection of analytes. The electrochemical size stability of 4.1, 15.1, and 50.3 nm average diameter Au NPs upon treatment with multiple electrochemical oxidation-reduction cycling in acidic electrolyte is monitored by observing changes in the peak oxidation potential (Ep) in ASV and the electrochemically measured surface …


Enhanced Electrochemical And Light-Driven Co2 Reduction By Incoporating Pendant Functionality In The Second-Coordination Sphere Of Molecular Catalysts, Sayontani Sinha Roy Jan 2021

Enhanced Electrochemical And Light-Driven Co2 Reduction By Incoporating Pendant Functionality In The Second-Coordination Sphere Of Molecular Catalysts, Sayontani Sinha Roy

Electronic Theses and Dissertations

With the increase in global population and rapid industrialization, a gigantic amount of greenhouse gases is being released into the atmosphere each year. The catastrophic effect of these accumulated greenhouse gases is driving global climate change and adversely impacting our ecosystem. Popularizing the traditional renewable energy sources (such as solar and wind energy) can mitigate the problem by cutting down anthropogenic CO2 emissions, which is the major contributor to this global problem. However, the intermittent nature of these energy sources is problematic to reliably power society throughout the year. Therefore, converting CO2 to various value-added chemicals with the aid of …


Advancements Toward Sustainable Solar Fuel Production Utilizing Reductive Homogeneous Electro- And Photocatalysis, Hunter Pratt Shirley Jan 2021

Advancements Toward Sustainable Solar Fuel Production Utilizing Reductive Homogeneous Electro- And Photocatalysis, Hunter Pratt Shirley

Electronic Theses and Dissertations

Molecular CO2 and H+ reductive catalysts, whether they be electro- or photocatalytic, have been shown to be possible routes of harnessing solar energy in a clean, renewable manner. There are few electrocatalysts operating at reasonable overpotentials to prove useful in artificial photosynthetic systems, and there are a number of environmental factors within these systems that have yet to be evaluated. Photo-driven catalysis is rare, difficult to control, and rarely provides high-value CO2 reduction products. I report herein an exceptionally low overpotential H+ reduction catalyst, a method of modulating electrocatalysts in-situ to improve performance, a first-of-its-kind mononuclear proton reduction photocatalyst, a …


Atom Transfer Radical Processes: From Catalyst Design To Polymer Synthesis, Characterization, And Application, Michael Novak Dec 2020

Atom Transfer Radical Processes: From Catalyst Design To Polymer Synthesis, Characterization, And Application, Michael Novak

Electronic Theses and Dissertations

Due to the toxicity of heavy metals and their prevalence in the environment there exists a need to develop highly active transition metal catalysts ultimately reducing the amount needed for chemical transformations. Additionally, there is interest in the scientific community for creating new materials that can remove these pollutants from industrial wastewater prior to its release into the environment. The work presented here focuses on the reduction and removal of heavy metals from industrial hazardous waste by designing novel highly active catalysts and developing polymeric adsorbents.

Highly active catalyst complexes consisting of novel hybrid ligands, 2-(dimethylamino)ethyl-bis-[2-(pyridylmethyl)amine] (M1-T2), and bis[2-(dimethylamino)ethyl]-2-(pyridylmethyl)amine (M2-T1), …


Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana Dec 2020

Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana

Electronic Theses and Dissertations

This dissertation involves several hydrogenolysis reactions but is mainly focused on hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of 2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of research for some time. Here, we used a Pd/C catalyst to study this reaction though rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2/D2 kinetic isotope effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The kinetics data are in agreement with similar systems reported before and follow a first-order dependence on chlorobenzene, half order for hydrogen and …


The Utilization Of Metal-Ligand Cooperativity For Electrocatalytic Reduction And Catalytic Hydration., Steven Cronin Dec 2020

The Utilization Of Metal-Ligand Cooperativity For Electrocatalytic Reduction And Catalytic Hydration., Steven Cronin

Electronic Theses and Dissertations

Small molecules are building blocks for developing larger materials. These small molecules could be extremely small, such as hydrogen, or larger such as a nitrile, but their impact on the global economy is massive. This dissertation describes a catalyst for three reactions involving small molecules; 1) the hydrogen evolution reaction, 2) the carbon dioxide reduction reaction, 3) nitrile hydration. The catalyst Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-pyridinehydrazonato)) use “metal-ligand cooperativity” between the Lewis acid Zn(II) metal ion and an uncoordinated Lewis base nitrogen in the ligand framework to activate substrates. The complex has been analyzed via NMR, UV/Vis, single crystal X-ray crystallography, …


Functional Nanomaterials By Combining Aminooxy Chemistry And Iodine Activation At Momolayer Protected Clusters., Tirtha Raj Sibakoti May 2020

Functional Nanomaterials By Combining Aminooxy Chemistry And Iodine Activation At Momolayer Protected Clusters., Tirtha Raj Sibakoti

Electronic Theses and Dissertations

Aminooxy (-ONH2) groups are most commonly known for their chemoselective reaction with carbonyl compounds (aldehydes/ketones) under mild reaction conditions. Aminooxy-based click chemistry is a versatile means of ligation as evidenced by broad application in material science, biology, biochemistry, analytical chemistry, and nanoscience. Our work exploits the facile reaction of aminooxy groups presented on the surface of gold (Au) or palladium (Pd) monolayer protected clusters (MPCs) with various aldehydes via oximation reactions, which form the robust oxime ether adducts. The functionalization of hexanethiolate-stabilized Au MPCs with a newly developed trifunctional amine-containing aminooxy alkanethiol ligand by thiol place-exchange affords aminooxylated …


Greening Of Catalytic Processes Using First-Row Transition Metals For Atom Transfer Radical Addition And Transfer Hydrogenation, Gabrielle Pros Dec 2019

Greening Of Catalytic Processes Using First-Row Transition Metals For Atom Transfer Radical Addition And Transfer Hydrogenation, Gabrielle Pros

Electronic Theses and Dissertations

This work focused on “greening” catalytic processes, atom transfer radical addition (ATRA), which adds an alkyl halide across and alkene, and transfer hydrogenation/dehydrogenation, which reduces a carbonyl without needing direct H2 gas. Part of “greening” of these processes is through using abundant first row metals, Cu and Ni for catalysis. One aim was to design new ligands which would be more active in these systems; the second was investigation of additives for catalyst regeneration to reduce the catalyst loading necessary for high yields.

The TPMA* family was investigated in ATRA. Rate constants followed the expected trend, which increased …


C-Metalated Nitriles: Diastereoselective Alkylations And Arylations, Robert John Mycka Dec 2019

C-Metalated Nitriles: Diastereoselective Alkylations And Arylations, Robert John Mycka

Electronic Theses and Dissertations

Development of an sp3 hybridized halogen-magnesium exchange route to Grignard reagents, chelation-controlled asymmetric induction of γ- and δ-hydroxynitriles as well as a diastereoselective arylation procedure for C-zincated nitriles have been explored. Sequential addition of i-PrMgCl and n-BuLi to 3- and 4-carbon iodoalcohols triggers a facile halogen-metal exchange to generate cyclic magnesium alkoxides capable of intercepting electrophiles to produce a diverse range of substituted alcohols. This work advances progress toward the synthesis of highly desirable chiral Grignard reagents.

Double deprotonation of γ- and δ-acyclic hydroxynitriles with i-PrMgCl effects highly diastereoselective alkylations via a singly-chelated magnesiated nitriles. …


Nontraditional Hydrogen Bonding In Asymmetric Lewis Acid Catalysis, Brandon Vernier May 2019

Nontraditional Hydrogen Bonding In Asymmetric Lewis Acid Catalysis, Brandon Vernier

Electronic Theses and Dissertations

In the field of asymmetric induction, there is a shift from the synthesis of reaction

specific chiral auxiliaries towards a broader mechanistic approach. Our approach is to

develop a theory of asymmetric catalyst design from first principles. The Diels-Alder

reaction of 2-methacrolein and 1,3-cyclopentadiene in the presence of 15 mole % lmenthoxy

aluminum dichloride, reported by Koga, achieved the (S)-exo-Diels-Alder

cycloadduct with 72% ee (0% ee Endo for acrolein). The dramatic change from 72% to 0%

ee is a significant fact that has been overlooked in practical organic synthesis.

In the first phase of this work, the conformational landscape of …


Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen Aug 2017

Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen

Electronic Theses and Dissertations

The research here deals with the conversion of 5-hydroxymethylfurfural (HMF) into a tunable polymer. HMF is a known derivative that can be acquired from biomass via hydrolysis of cellulose followed by isomerization and finally selective dehydration. The process considered here is being developed to create tunable polymers from HMF and involves several different steps, three of which are covered here. The first step, an etherification, is the reaction of HMF with an alcohol. This step is significant because in this step the R-group from the alcohol is added to HMF and the branching portion formed is carried over to the …


Water-Soluble Pd And Pd-Alloy Nanoparticles As Catalysts In Biphasic Solvent., Shekhar Bhama Aug 2017

Water-Soluble Pd And Pd-Alloy Nanoparticles As Catalysts In Biphasic Solvent., Shekhar Bhama

Electronic Theses and Dissertations

This dissertation shows the chemical synthesis of Pd and Pd-alloy nanoparticles (NPs) and their hydrogen and thermal stabilities for applications in the homogeneous and pseudo-homogeneous catalysis of organic reactions. Mainly, this dissertation describes 1) the chemical synthesis of Pd, PdPt, PdAu and Cu-Pd core-shell NPs coated with various organic ligands (thiols, amines and citrate), with different metal compositions in different synthetic environment, 2) the stability of solutions containing various NPs in the presence of hydrogen or varying temperatures, 3) the evaluation of the catalytic activity of Pd, PdPt, PdAu and CuPd NPs for hydrogenation/isomerization of allylic alcohols, and 4) the …


Homogeneous Ligand-Centered Hydrogen Evolution And Hydrogen Oxidation : Exploiting Redox Non-Innocence To Drive Catalysis., Andrew Z. Haddad May 2017

Homogeneous Ligand-Centered Hydrogen Evolution And Hydrogen Oxidation : Exploiting Redox Non-Innocence To Drive Catalysis., Andrew Z. Haddad

Electronic Theses and Dissertations

Hydrogen is a promising carbon-free fuel / energy carrier and is an essential building block for many industrial and agricultural processes. Rising energy demands have ignited interest in the development of carbon-free and carbon neutral energy sources. In this context, hydrogen is an attractive candidate—being energy-dense, carbon-free—and easily accessible through a two-electron reduction of water. Accordingly, many electrochemical homogeneous catalyst systems have been studied, with a focus on understanding the mechanism of hydrogen evolution proceeding through metal-hydride intermediates. However, there has been a renaissance in hydrogen evolution reaction (HER) catalyst design, with many groups implicating ligand redox non-innocence as a …


Investigation Of Nanoceria-Modified Platinum-Gold Composite Electrodes For The Electrochemical Reduction Of Oxygen In Alkaline Media, Rahul Hegishte Jan 2011

Investigation Of Nanoceria-Modified Platinum-Gold Composite Electrodes For The Electrochemical Reduction Of Oxygen In Alkaline Media, Rahul Hegishte

Electronic Theses and Dissertations

Platinum-gold and nanoceria-modified platinum-gold electrodes were prepared on a platinum surface via electrochemical reduction of solutions of platinum and gold salts in the dispersion of nanoceria. The molar ratios of Pt and Au were varied in both PtAu and PtAu/CeO₂ electrodes while the total concentration of the metals was maintained at 2 x 10⁻³M and the concentration of nanoceria was maintained constant at 5 x 10⁻³M. The electrodes were characterized by their cyclic voltammetry curves in 0.5M sulfuric acid solution. The electrochemically active area of the electrodes was determined using the copper underpotential deposition method. The linear sweep voltammograms of …


Supported Mono And Bimetallic Platinum And Iron Nanoparticles Electronic, Structural, Catalytic, And Vibrational Properties, Jason Robert Croy Jan 2010

Supported Mono And Bimetallic Platinum And Iron Nanoparticles Electronic, Structural, Catalytic, And Vibrational Properties, Jason Robert Croy

Electronic Theses and Dissertations

Catalysis technologies are among the most important in the modern world. They are instrumental in the realization of a variety of products and processes including chemicals, polymers, foods, pharmaceuticals, fuels, and fuel cells. As such, interest in the catalysts that drive these processes is ongoing, and basic research has led to significant advances in the field, including the production of more environmentally friendly catalysts that can be tuned at the molecular/atomic level. However, there are many factors which influence the performance of a catalyst and many unanswered questions still remain. The first part of this work is concerned with the …


In-Situ Gas Phase Catalytic Properties Of Metal Nanoparticles, Luis Ono Jan 2009

In-Situ Gas Phase Catalytic Properties Of Metal Nanoparticles, Luis Ono

Electronic Theses and Dissertations

Recent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research, fundamental understanding on the factors that dominate the activity, selectivity, and stability (life-time) of nanoscale catalysts are still not well understood. This dissertation aims to explore …