Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Sulfur-Tolerant Catalyst For The Solid Oxide Fuel Cell, Bozeman Joe Frank Iii Jan 2010

Sulfur-Tolerant Catalyst For The Solid Oxide Fuel Cell, Bozeman Joe Frank Iii

Browse all Theses and Dissertations

JP-8 fuel is easily accessible, transportable, and has hydrogen content essential to solid oxide fuel cell (SOFC) operation. However, this syngas has sulfur content which results in a poisonous hydrogen sulfide that degrades electrochemical activity and causes complete SOFC failure in some cases. The goal is to synthesize and verify a cost-effective, catalyst supported on cerium oxide that either stabilizes ionic conductivity in the presence of hydrogen sulfide and/or is highly sulfur-resistant. After thorough computational analysis, it was concluded that the platinum-copper skin catalyst was the most cost-effective, sulfur-resistant catalyst. Experimental synthesis of copper, platinum, and platinum-copper skin catalysts supported …


Ostwald Ripening Of Iron (Fe) Catalyst Nanoparticles On Aluminum Oxide Surfaces (Al2O3) For The Growth Of Carbon Nanotubes, Roberto I. Acosta Jan 2010

Ostwald Ripening Of Iron (Fe) Catalyst Nanoparticles On Aluminum Oxide Surfaces (Al2O3) For The Growth Of Carbon Nanotubes, Roberto I. Acosta

Browse all Theses and Dissertations

Theoretical models have proposed that the nucleation and growth mechanism of carbon nanotubes (CNTs) has been affected by the catalytic activity of transition metals. The catalyst behavior during growth has been mainly associated as the responsible mechanism for the termination of CNT growth. Although several hypotheses have been developed to explain this mechanism, is still today an unresolved phenomenon. It was recently shown that the Ostwald ripening of iron (Fe) nanoparticles played a dominant role in the termination of CNT growth. The Ostwald ripening mechanism was further investigated as a function of thermal annealing in Hydrogen (H2) for …