Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick Dec 2013

Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick

Posters

Rayleigh lidar opened a portion of the atmosphere, from 30 to 90 km, to ground-based observations. Rayleigh-scatter observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 between 45 and 90 km. The lidar consisted of a 0.44-m diameter mirror, a frequency-doubled Nd:YAG laser opera'ng at 532-nm at 30- Hz at either 18- or 24-W, giving power- aperture products (PAPs) of 2.7- or 3.6- Wm2, respec'vely, and one detector channel. An example of what was accomplished with this system is shown as part of Fig. 1. The temperature climatology was based on ~5000 hours …


Diverse Light Emissions From Epoxy Due To Energetic Electron Bombardment, Justin Christensen, Jr Dennison, Justin Dekaney Oct 2013

Diverse Light Emissions From Epoxy Due To Energetic Electron Bombardment, Justin Christensen, Jr Dennison, Justin Dekaney

Posters

Dielectric materials subjected to energetic electron fluxes can emit light in several forms. We have observed three distinct types of emissions: (i) short-duration (<1 ms), high-intensity electrostatic discharge (ESD) or “arc” events; (ii) intermediate-duration, high-intensity events which begin with a bright arc followed by an exponential decay of intensity (~10 to 100 sec decay constant), termed “flares”; and (iii) long-duration, low-intensity emission, or cathodoluminescence, that continues as long as the electron flux is on. These events were studied for bulk samples of bisphenol/amine epoxy, using an electron gun with varying current densities (0.3 to 5 nA-cm-2) and energies (12 to 40 keV) in a high vacuum chamber. Light emitted from the sample was measured with high-sensitivity visible and near-infrared video cameras. We present results of the spatial and temporal extent for each type of event. We also discuss how absolute spectral radiance and rates for each type of these events are dependent on incident electron current density, energy, and power density and on material type, temperature, and thickness. Applications of …


Atomic Oxygen Modification Of The Nanodielectric Surface Composition Of Carbon-Loaded Polyimide Composites, Kelby T. Peterson, Jr Dennison Oct 2013

Atomic Oxygen Modification Of The Nanodielectric Surface Composition Of Carbon-Loaded Polyimide Composites, Kelby T. Peterson, Jr Dennison

Posters

Black Kapton is a nanodielectric composite of carbon particles (100-500 nm) embedded in an insulating polyimide polymer matrix (100-5000 nm depth). Analysis of this nanodielectric composite has been done via optical imaging, scanning electron microscopy, and energy- dispersive x-ray analysis in order to gain insight into its nanodielectric properties. The insulating polyimide is known to be inert and impervious to strong bases and acids, but is affected by atomic oxygen exposure. We have observed changes in the surface structure and relative carbon- polymer concentrations in MISSE-6 samples that were exposed to the low earth orbit environment for 18 months outside …


Time Dependent Conductivity Of Low Density Polyethylene, Phillip Lundgreen, Justin Dekany, Jr Dennison Oct 2013

Time Dependent Conductivity Of Low Density Polyethylene, Phillip Lundgreen, Justin Dekany, Jr Dennison

Posters

The time independent conductivity of Low Density Polyethylene (LDPE) is useful in determining rates of conductivity based on intrinsic properties of a material. A simple, yet elegant, parallel plate capacitor setup allowed for data collection which extended beyond 97 hours. Through precise measurements the different stages of charge distribution were determined to the level of 3 10-16 A. Through the use of data analysis programs, the dielectric constant and dispersion constant were both determined for LDPE and then compared with a simple, macroscopic, first-principles model to determine the quality of the fit.


Mesospheric Density Climatologies Determined At Midlatitudes Using Rayleigh Lidar, David L. Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron Aug 2013

Mesospheric Density Climatologies Determined At Midlatitudes Using Rayleigh Lidar, David L. Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron

Posters

The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected 11 years of data between 1993 and 2004. From Rayleigh lidar photon-count returns, relative densities throughout the mesosphere, from 45 to 90 km, were determined. Using these relative densities, three climatologies are derived, each using a different density normalization method at 45 km: the first method normalized the relative densities to a constant; the second normalized them to the NRLMSISe00 empirical model; and the third normalized them to …


Rayleigh Lidar Temperature Studies In The Upper Mesosphere And Lower Thermosphere, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Matthew T. Emerick Jun 2013

Rayleigh Lidar Temperature Studies In The Upper Mesosphere And Lower Thermosphere, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Matthew T. Emerick

Posters

Rayleigh lidar technology opened the middle atmosphere (from 30–90 km) to ground-based observations. The upgraded system at the Atmospheric Lidar Observatory (ALO) on the campus of Utah State University (41.74, 111.81) has shown that these ground-based observations can be extended to 109 km, with the goal of reaching 120 km. The resultant study of short and long-term temperature trends, using Rayleigh lidar, contributes immensely to the overall understanding of the properties and dominant physical processes in the middle atmosphere and Mesosphere-Lower Thermosphere (MLT) region. Temperature variations on short time scales, from minutes to days, give insight into the effects of …


Nanodielectric Properties Of High Conductivity Carbon-Loaded Polyimide Under Electron-Beam Irradiation, Amberly Evans, J. R. Dennison, Gregory Wilson, Justin Dekany Jun 2013

Nanodielectric Properties Of High Conductivity Carbon-Loaded Polyimide Under Electron-Beam Irradiation, Amberly Evans, J. R. Dennison, Gregory Wilson, Justin Dekany

Posters

Electron irradiation experiments were conducted to investigate the electron transport, charging, discharging, cathodoluminescence and emission properties of high-conductivity carbon-loaded polyimide (Black KaptonTM). We discuss how these results are related to the nanoscale structure of the composite material. Measurements were conducted in an ultrahigh vacuum electron emission test chamber from <40 K to 290 K, using a monoenergetic beam with energies ranging from 3 keV to 25 keV and flux densities from 0.1 nA/cm2 to 100 nA/cm2 to deposit electrons in the material surface layer. Various experiments measured transport and displacement currents to a rear grounded electrode, absolute electron emission yields, absolute electron-induced photon emission yields and photon emission spectra (~250 nm to 1700 nm), and arcing rates and location. Numerous …


Electron Penetration Ranges As A Function Of Effective Number Of Valence Electrons, Teancum Quist, Blake Moore, Greg Wilson, Jr Dennison Apr 2013

Electron Penetration Ranges As A Function Of Effective Number Of Valence Electrons, Teancum Quist, Blake Moore, Greg Wilson, Jr Dennison

Posters

The Continuous-Slow-Down Approximation (CSDA) is used to create a simple composite analytical formula to estimate the range or maximum penetration depth of incident electrons into diverse materials including conductors, semiconductors, and insulators. This formula generates an approximation to the range using a single fitting parameter, Nv, described as the effective number of valence electrons. This range of the formulation extends to electrons with energies from <10 eV to >10MeV, with 20% accuracy. A list comprised of 222 materials has been collected that greatly extends the applicability of this model. Several key material constants were compiled for each material, including the atomic …


Electric Multipole Interactions In An Extended Beg Model, Teresa Burns, Jr Dennison Mar 2013

Electric Multipole Interactions In An Extended Beg Model, Teresa Burns, Jr Dennison

Posters

General 2D dielectric phase diagrams and phase transitions for multipolar molecules adsorbed to a square ionic crystal are presented. The adsorbed molecules are modeled using a dilute spin-one Ising model in the Blume-Emery-Griffiths formalism, using a mean-field approximation. Physical constants such as the electricmultipole moments and binding energies are used to uniquely determine the interaction parameters over the full range of physically-relevant values. We find that temperature- and coverage-dependent antiferroelectric to ferroelectric, coverage-dependent ferroelectric up to ferroelectric down, reentrant ferroelectric to ferrielectric, and order-disorder dipole phase transitions can occur. The results are presented as a quasi-continuous set of phase diagrams. …