Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Utah State University

Physics Capstone Projects

Temperature

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Sodium Lidar For Mesopause Temperature And Wind Studies, Xiaoqi Xi May 2018

Sodium Lidar For Mesopause Temperature And Wind Studies, Xiaoqi Xi

Physics Capstone Projects

In 1990 Dr. Chiao-Yao She developed a narrowband Na Temperature lidar in Colorado State University (CSU), it immediately became an important instrument to measure the temperature in mesopause region (80-105 km in altitude): the atmospheric layer between mesosphere and thermosphere [Krueger et al., 2015]. Led by Dr. Tao Yuan, this system was relocated to Utah State University (USU) in summer 2010 and has been continuing its exploration of upper atmosphere. This report will give a brief introduction to the theory and application of Sodium Lidar.


Diffusive Electron Heat Flow And Temperature Variance Along Magnetic Field Lines, Michael Kushlan Jan 2014

Diffusive Electron Heat Flow And Temperature Variance Along Magnetic Field Lines, Michael Kushlan

Physics Capstone Projects

In this research we examine how electron heat moves along magnetic field lines and how this affects temperature variations in plasmas. Specifically we wrote FORTRAN code to solve the electron temperature equation numerically. We also solved the steady state electron temperature equation analytically using an integrating factor. We verified that the numerical and analytical solutions obtained the same result. Finally we calculated the standard deviation of temperature in our domain for the steady state. Gaussian legendre quadrature was used to integrate various functions. We represented our magnetic field and heat source with Fourier series. The sin and cosine coefficients for …


Forward Model For Temperature Derivation From Atmospheric Lidar, Jaren Hobbs Nov 2013

Forward Model For Temperature Derivation From Atmospheric Lidar, Jaren Hobbs

Physics Capstone Projects

Atmospheric Lidar takes advantage of Rayleigh backscattering to create a relative density profile of the atmosphere. The method for temperature derivation is based on the work of Chanin and Hauchecorne (CH). Beginning with an initial temperature, and utilizing the ideal gas law, a downward integration procedure is applied to create a temperature profile from the density profile down to forty- five kilometers. Since this initial temperature is only a best guess, the temperatures towards the top of the profile may not be accurate. However, so long as the guess is reasonable, within perhaps a fifty Kelvin margin (though hopefully not …