Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 52

Full-Text Articles in Physical Sciences and Mathematics

Ultrahigh Energy Storage Properties In (Sr0.7bi0.2)Tio3-Bi(Mg0.5zr0.5)O3 Lead-Free Ceramics And Potential For High-Temperature Capacitors, Xi Kong, Letao Yang, Zhenxiang Cheng, Shujun Zhang Jan 2020

Ultrahigh Energy Storage Properties In (Sr0.7bi0.2)Tio3-Bi(Mg0.5zr0.5)O3 Lead-Free Ceramics And Potential For High-Temperature Capacitors, Xi Kong, Letao Yang, Zhenxiang Cheng, Shujun Zhang

Australian Institute for Innovative Materials - Papers

2020 by the authors. Due to the enhanced demand for numerous electrical energy storage applications, including applications at elevated temperatures, dielectric capacitors with optimized energy storage properties have attracted extensive attention. In this study, a series of lead-free strontium bismuth titanate based relaxor ferroelectric ceramics have been successfully synthesized by high temperature solid-state reaction. The ultrahigh recoverable energy storage density of 4.2 J/cm3 under 380 kV/cm, with the high efficiency of 88%, was obtained in the sample with x = 0.06. Of particular importance is that this ceramic composition exhibits excellent energy storage performance over a wide work temperature up …


S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen Jan 2020

S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen

Australian Institute for Innovative Materials - Papers

2020 Iron sulfides draw much attention as electrode candidates for sodium-ion batteries (SIBs) due to the rich chemical stoichiometries and high capacity. However, they usually exhibit poor cycling performance due to the large volume change during sodiation/desodiation process. In this work, we embed Fe7S8 nanoparticles into sulfur, nitrogen-doped carbon (S/N-C) nanofibers through electrospinning/sulfurization processes. The heteroatom doped carbon matrixes could effectively protect the Fe7S8 from structural collapse, obtaining a stable cycling performance. Moreover, the conductive matrixes with 1D structure can facilitate the diffusion of electrons, leading to good rate capability. As results, the as-designed Fe7S8@S/N-C nanofibers present a discharge capacity …


Coupling Topological Insulator Snsb2te4 Nanodots With Highly Doped Graphene For High-Rate Energy Storage, Zhibin Wu, Gemeng Liang, Wei Kong Pang, Tengfei Zhou, Zhenxiang Cheng, Wenchao Zhang, Ye Liu, Bernt Johannessen, Zaiping Guo Jan 2019

Coupling Topological Insulator Snsb2te4 Nanodots With Highly Doped Graphene For High-Rate Energy Storage, Zhibin Wu, Gemeng Liang, Wei Kong Pang, Tengfei Zhou, Zhenxiang Cheng, Wenchao Zhang, Ye Liu, Bernt Johannessen, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Topological insulators have spurred worldwide interest, but their advantageous properties have scarcely been explored in terms of electrochemical energy storage, and their high-rate capability and long-term cycling stability still remain a significant challenge to harvest. p-Type topological insulator SnSb2Te4 nanodots anchoring on few-layered graphene (SnSb2Te4/G) are synthesized as a stable anode for high-rate lithium-ion batteries and potassium-ion batteries through a ball-milling method. These SnSb2Te4/G composite electrodes show ultralong cycle lifespan (478 mAh g−1 at 1 A g−1 after 1000 cycles) and excellent rate capability (remaining 373 mAh g−1 even at 10 A g−1) in Li-ion storage owing to the rapid …


Structural Engineering Of Hierarchical Micro‐Nanostructured Ge-C Framework By Controlling The Nucleation For Ultralong Life Li Storage, Shilin Zhang, Yang Zheng, Xuejuan Huang, Jian Hong, Bin Cao, Junnan Hao, Qining Fan, Tengfei Zhou, Zaiping Guo Jan 2019

Structural Engineering Of Hierarchical Micro‐Nanostructured Ge-C Framework By Controlling The Nucleation For Ultralong Life Li Storage, Shilin Zhang, Yang Zheng, Xuejuan Huang, Jian Hong, Bin Cao, Junnan Hao, Qining Fan, Tengfei Zhou, Zaiping Guo

Australian Institute for Innovative Materials - Papers

The rational design of a proper electrode structure with high energy and power densities, long cycling lifespan, and low cost still remains a significant challenge for developing advanced energy storage systems. Germanium is a highly promising anode material for high-performance lithium ion batteries due to its large specific capacity and remarkable rate capability. Nevertheless, poor cycling stability and high price significantly limit its practical application. Herein, a facile and scalable structural engineering strategy is proposed by controlling the nucleation to fabricate a unique hierarchical micro-nanostructured Ge-C framework, featuring high tap density, reduced Ge content, superb structural stability, and a 3D …


Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou Jan 2019

Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Despite the significant progress in the fabrication of advanced electrode materials, complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions, morphologies, and chemistries. Inspired by the unique geometric structures of natural biomacromolecules together with their high affinities for metal species, we propose the use of skin collagen fibers for the template crafting of a novel multicore-shell Fe2N-carbon framework anode configuration, composed of hierarchical N-doped carbon nanofiber bundles firmly embedded with Fe2N nanoparticles (Fe2N@N-CFBs). In the resultant heterostructure, the Fe2N nanoparticles firmly confined inside the carbon shells are spatially isolated but electronically well …


Lotus Rhizome-Like S/N-C With Embedded Ws2 For Superior Sodium Storage, Xiu Li, Yonggang Sun, Xun Xu, Yunxiao Wang, Shulei Chou, Anmin Cao, Libao Chen, Shi Xue Dou Jan 2019

Lotus Rhizome-Like S/N-C With Embedded Ws2 For Superior Sodium Storage, Xiu Li, Yonggang Sun, Xun Xu, Yunxiao Wang, Shulei Chou, Anmin Cao, Libao Chen, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Sodium-ion batteries (SIBs) hold great promise as power sources because of their low cost and decent electrochemical behavior. Nevertheless, the poor rate performance and long-term cycling capability of anode materials in SIBs still impede their practical application in smart grids and electric vehicles. Herein, we design a delicate method to embed WS2 nanosheets into lotus rhizome-like heteroatom-doped carbon nanofibers with abundant hierarchical tubes inside, forming WS2@sulfur and nitrogen-doped carbon nanofibers (WS2@S/N-C). The WS2@S/N-C nanofibers exhibit a large discharge capacity of 381 mA h g-1 at 100 mA g-1, excellent rate capacity of 108 mA h g-1 at 30 A g-1, …


In Operando Mechanism Analysis On Nanocrystalline Silicon Anode Material For Reversible And Ultrafast Sodium Storage, Lei Zhang, Xianluo Hu, Chaoji Chen, Haipeng Guo, Xiaoxiao Liu, Gengzhao Xu, Haijian Zhong, Shuang Cheng, Peng Wu, Jiashen Meng, Yunhui Huang, Shi Xue Dou, Hua-Kun Liu Mar 2018

In Operando Mechanism Analysis On Nanocrystalline Silicon Anode Material For Reversible And Ultrafast Sodium Storage, Lei Zhang, Xianluo Hu, Chaoji Chen, Haipeng Guo, Xiaoxiao Liu, Gengzhao Xu, Haijian Zhong, Shuang Cheng, Peng Wu, Jiashen Meng, Yunhui Huang, Shi Xue Dou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Presently, lithium-ion batteries (LIBs) are the most promising commercialized electrochemical energy storage systems. Unfortunately, the limited resource of Li results in increasing cost for its scalable application and a general consciousness of the need to find new type of energy storage technologies. Very recently, substantial effort has been invested to sodium-ion batteries (SIBs) due to their effectively unlimited nature of sodium resources. Furthermore, the potential of Li/Li+ is 0.3 V lower than that of Na/Na+, which makes it more effective to limit the electrolyte degradation on the outer surface of the electrode.[1] Nevertheless, one major obstacle for the commercial application …


Plasma-Induced Amorphous Shell And Deep Cation-Site S Doping Endow Tio2 With Extraordinary Sodium Storage Performance, Hanna He, Dan Huang, Wei Kong Pang, Dan Sun, Qi Wang, Yougen Tang, Xiaobo Ji, Zaiping Guo, Haiyan Wang Jan 2018

Plasma-Induced Amorphous Shell And Deep Cation-Site S Doping Endow Tio2 With Extraordinary Sodium Storage Performance, Hanna He, Dan Huang, Wei Kong Pang, Dan Sun, Qi Wang, Yougen Tang, Xiaobo Ji, Zaiping Guo, Haiyan Wang

Australian Institute for Innovative Materials - Papers

Structural design and modification are effective approaches to regulate the physicochemical properties of TiO 2 , which play an important role in achieving advanced materials. Herein, a plasma-assisted method is reported to synthesize a surface-defect-rich and deep-cation-site-rich S doped rutile TiO 2 (R-TiO 2- x -S) as an advanced anode for the Na ion battery. An amorphous shell (≈3 nm) is induced by the Ar/H 2 plasma, which brings about the subsequent high S doping concentration (≈4.68 at%) and deep doping depth. Experimental results and density functional theory calculations demonstrate greatly facilitated ion diffusion, improved electronic conductivity, and an increased …


Construction Of Hierarchical Mose2 Hollow Structures And Its Effecton Electrochemical Energy Storage And Conversion, Sha Hu, Qingqing Jiang, Shuoping Ding, Ye Liu, Zuozuo Wu, Zhengxi Huang, Tengfei Zhou, Zaiping Guo, Juncheng Hu Jan 2018

Construction Of Hierarchical Mose2 Hollow Structures And Its Effecton Electrochemical Energy Storage And Conversion, Sha Hu, Qingqing Jiang, Shuoping Ding, Ye Liu, Zuozuo Wu, Zhengxi Huang, Tengfei Zhou, Zaiping Guo, Juncheng Hu

Australian Institute for Innovative Materials - Papers

Metal selenides have attracted increased attentionas promising electrode materials for electrochemical energy storageand conversion systems including metal-ion batteries and watersplitting. However, their practical application is greatly hindered bycollapse of the microstructure, thus leading to performance fading.Tuning the structure at nanoscale of these materials is an effectivestrategy to address the issue. Herein, we craft MoSe2withhierarchical hollow structures via a facile bubble-assistedsolvothermal method. The temperature-related variations of thehollow interiors are studied, which can be presented as solid, yolk−shell, and hollow spheres, respectively. Under the simultaneousaction of the distinctive hollow structures and interconnectionsamong the nanosheets, more intimate contacts between MoSe2and electrolyte can be …


Hierarchical Porous Nio/B-Nimoo4 Heterostructure As Superior Anode Material For Lithium Storage, Zhijian Wang, Shilin Zhang, Hai Zeng, Haimin Zhao, Wei Sun, Meng Jiang, Chuanqi Feng, Jianwen Liu, Tengfei Zhou, Yang Zheng, Zaiping Guo Jan 2018

Hierarchical Porous Nio/B-Nimoo4 Heterostructure As Superior Anode Material For Lithium Storage, Zhijian Wang, Shilin Zhang, Hai Zeng, Haimin Zhao, Wei Sun, Meng Jiang, Chuanqi Feng, Jianwen Liu, Tengfei Zhou, Yang Zheng, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Ternary transition metal oxides (TTMOs) have attracted considerable attention for rechargeable batteries because of their fascinating properties. However, the unsatisfactory electrochemical performance originating from the poor intrinsic electronic conductivity and inferior structural stability impedes their practical applications. Here, the novel hierarchical porous NiO/β-NiMoO4heterostructure is fabricated, and exhibits high reversible capacity, superior rate capability, and excellent cycling stability in Li-ion batteries (LIBs), which is much better than the corresponding single-phase NiMoO4and NiO materials. The significantly enhanced electrochemical properties can be attributed to its superior structural characteristics, including the large surface area, abundant pores, fast charge transfer, and catalytic effect of the …


Effect Of Storage Environment On Hydrogen Generation By The Reaction Of Al With Water, Yin-Qiang Wang, Wei-Zhuo Gai, Xia-Yu Zhang, Hong-Yi Pan, Zhenxiang Cheng, Pingguang Xu, Zhen-Yan Deng Jan 2017

Effect Of Storage Environment On Hydrogen Generation By The Reaction Of Al With Water, Yin-Qiang Wang, Wei-Zhuo Gai, Xia-Yu Zhang, Hong-Yi Pan, Zhenxiang Cheng, Pingguang Xu, Zhen-Yan Deng

Australian Institute for Innovative Materials - Papers

Al powder was stored in saturated water vapor, oxygen, nitrogen and drying air separately for a time period of up to six months, the degradation behavior of Al activity was characterized by the reaction of Al with water. It was found that water vapor decreased the induction time for the beginning of Al-water reaction and reduced the total hydrogen generation per unit weight of Al, while oxygen increased the induction time and retarded the Al-water reaction. In contrast, the effect of nitrogen and drying air on Al activity was weak. The mechanism analyses indicated that water vapor promoted the hydration …


Oxygen-Free Layer-By-Layer Assembly Of Lithiated Composites On Graphene For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Xiaowei Chen, Fang Fang, Dalin Sun, Xingguo Li, Zaiping Guo, Xuebin Yu Jan 2016

Oxygen-Free Layer-By-Layer Assembly Of Lithiated Composites On Graphene For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Xiaowei Chen, Fang Fang, Dalin Sun, Xingguo Li, Zaiping Guo, Xuebin Yu

Australian Institute for Innovative Materials - Papers

A facile hydrogenation-induced self-assembly strategy to synthesize lithium hydride (LiH) nanosheets with a thickness of 2 nm that are uniformly distributed on graphene is reported and designed. Taking advantage of LiH nanosheets with high reactivity and a homogeneous distribution on graphene support as a nanoreactor, the confined chemical synthesis of oxygen-free lithiated composites is effectively and efficiently realized.


Graphene-Wrapped Reversible Reaction For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Feilong Wu, Fang Fang, Dalin Sun, Zaiping Guo, Zhenguo Huang, Xuebin Yu Jan 2016

Graphene-Wrapped Reversible Reaction For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Feilong Wu, Fang Fang, Dalin Sun, Zaiping Guo, Zhenguo Huang, Xuebin Yu

Australian Institute for Innovative Materials - Papers

Here, we report the fabrication of a graphene-wrapped nanostructured reactive hydride composite, i.e., 2LiBH4-MgH2, made by adopting graphene-supported MgH2 nanoparticles (NPs) as the nanoreactor and heterogeneous nucleation sites. The porous structure, uniform distribution of MgH2 NPs, and the steric confinement by flexible graphene induced a homogeneous distribution of 2LiBH4-MgH2 nanocomposite on graphene with extremely high loading capacity (80 wt%) and energy density. The well-defined structural features, including even distribution, uniform particle size, excellent thermal stability, and robust architecture endow this composite with significant improvements in its hydrogen storage performance. For instance, at a temperature as low as 350 °C, a …


Electrochemically Active, Novel Layered M-Znv2o6 Nanobelts For Highly Rechargeable Na-Ion Energy Storage, Yan Sun, Chun-Sheng Li, Qiuran Yang, Shulei Chou, Hua-Kun Liu Jan 2016

Electrochemically Active, Novel Layered M-Znv2o6 Nanobelts For Highly Rechargeable Na-Ion Energy Storage, Yan Sun, Chun-Sheng Li, Qiuran Yang, Shulei Chou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Electrode materials with a three-dimensional (3D) layered framework and excellent electrochemical stability can provide a new avenue for enhancing the overall performance of promising sodium ion batteries. Here, we show that layered monoclinic (m) - ZnV2O6 nanobelts with high chemical activity for Na-ion energy storage have been effectively fabricated via a rapid microwave irradiation method over the reaction time of 8 h, in which the fabricating efficiency is 24.5 times greater in comparison with the traditional hydrothermal method. The morphology and phase evolutions were verified by means of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study also …


Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang Jan 2016

Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Nitrogen-doped carbon coated Co 3 O 4 nanoparticles (Co 3 O 4 @NC) with high Na-ion storage capacity and unprecedented long-life cycling stability are reported in this paper. The Co 3 O 4 @NC was derived from a metal – organic framework ZIF-67, where the Co ions and organic linkers were, respectively, converted to Co 3 O 4 nanoparticle cores and nitrogen-doped carbon shells through a controlled two-step annealing process. The Co 3 O 4 @NC shows a porous nature with a surface area of 101 m 2 g 1 . When applied as an anode for sodium ion batteries …


All-In-One Energy Harvesting And Storage Devices, Ju-Hyuck Lee, Jeonghun Kim, Tae Yun Kim, Md Shahriar Hossain, Sang Woo Kim, Jung Ho Kim Jan 2016

All-In-One Energy Harvesting And Storage Devices, Ju-Hyuck Lee, Jeonghun Kim, Tae Yun Kim, Md Shahriar Hossain, Sang Woo Kim, Jung Ho Kim

Australian Institute for Innovative Materials - Papers

Currently, integration of energy harvesting and storage devices is considered to be one of the most important energy-related technologies due to the possibility of replacing batteries or at least extending the lifetime of a battery. This review aims to describe current progress in the various types of energy harvesters, hybrid energy harvesters, including multi-type energy harvesters with coupling of multiple energy sources, and hybridization of energy harvesters and energy storage devices for self-powered electronics. We summarize research on recent energy harvesters based on the piezoelectric, triboelectric, pyroelectric, thermoelectric, and photovoltaic effects. We also cover hybrid cell technologies to simultaneously generate …


Nitrogen-Doped Graphene Ribbon Assembled Core-Sheath Mno@Graphene Scrolls As Hierarchically Ordered 3d Porous Electrodes For Fast And Durable Lithium Storage, Yun Zhang, Penghui Chen, Xu Gao, Bo Wang, Heng Liu, Haobin Wu, Hua-Kun Liu, Shi Xue Dou Jan 2016

Nitrogen-Doped Graphene Ribbon Assembled Core-Sheath Mno@Graphene Scrolls As Hierarchically Ordered 3d Porous Electrodes For Fast And Durable Lithium Storage, Yun Zhang, Penghui Chen, Xu Gao, Bo Wang, Heng Liu, Haobin Wu, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Graphene scroll is an emerging 1D tubular form of graphitic carbon that has potential applications in electrochemical energy storage. However, it still remains a challenge to composite graphene scrolls with other nanomaterials for building advanced electrode configuration with fast and durable lithium storage properties. Here, a transition-metal-oxide-based hierarchically ordered 3D porous electrode is designed based on assembling 1D core-sheath MnO@N-doped graphene scrolls with 2D N-doped graphene ribbons. In the resulting architecture, porous MnO nanowires confined in tubular graphene scrolls are mechanically isolated but electronically wellconnected, while the interwoven graphene ribbons offer continuous conductive paths for electron transfer in all directions. …


Engineering Hierarchical Hollow Nickel Sulfide Spheres For High-Performance Sodium Storage, Dan Zhang, Wenping Sun, Yu Zhang, Yuhai Dou, Yinzhu Jiang, Shi Xue Dou Jan 2016

Engineering Hierarchical Hollow Nickel Sulfide Spheres For High-Performance Sodium Storage, Dan Zhang, Wenping Sun, Yu Zhang, Yuhai Dou, Yinzhu Jiang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries (LIBs) for energy storage due to the abundance of sodium, especially for grid distribution systems. The practical implementation of SIBs, however, is severely hindered by their low energy density and poor cycling stability due to the poor electrochemical performance of the existing electrodes. Here, to achieve high-capacity and durable sodium storage with good rate capability, hierarchical hollow NiS spheres with porous shells composed of nanoparticles are designed and synthesized by tuning the reaction parameters. The formation mechanism of this unique structure is systematically investigated, which is clearly revealed to …


Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets For High-Performance Sodium And Lithium Storage, Dan Zhang, Wenping Sun, Zhihui Chen, Yu Zhang, Wenbin Luo, Yinzhu Jiang, Shi Xue Dou Jan 2016

Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets For High-Performance Sodium And Lithium Storage, Dan Zhang, Wenping Sun, Zhihui Chen, Yu Zhang, Wenbin Luo, Yinzhu Jiang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Two-dimensional (2D) nanomaterials are one of the most promising types of candidates for energy-storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt-/nickel-based hydroxides and oxides. The sodium and lithium storage capabilities of Co3O4 nanosheets are evaluated in detail. For sodium storage, the Co3O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g¿1 at 7.0 A g¿1 and 150 mA h g¿1 at 10.0 A g¿1) and promising cycling performance (404 mA …


Wearable Energy-Smart Ribbons For Synchronous Energy Harvest And Storage, Chao Li, Md. Monirul Islam, Julian Moore, Joseph Sleppy, Caleb Morrison, Konstantin K. Konstantinov, Shi Xue Dou, Chait Renduchintala, Jayan Thomas Jan 2016

Wearable Energy-Smart Ribbons For Synchronous Energy Harvest And Storage, Chao Li, Md. Monirul Islam, Julian Moore, Joseph Sleppy, Caleb Morrison, Konstantin K. Konstantinov, Shi Xue Dou, Chait Renduchintala, Jayan Thomas

Australian Institute for Innovative Materials - Papers

No abstract provided.


Flexible Free-Standing Graphene Paper With Interconnected Porous Structure For Energy Storage, Kewei Shu, Caiyun Wang, Sha Li, Chen Zhao, Yang Yang, Hua-Kun Liu, Gordon G. Wallace Jan 2015

Flexible Free-Standing Graphene Paper With Interconnected Porous Structure For Energy Storage, Kewei Shu, Caiyun Wang, Sha Li, Chen Zhao, Yang Yang, Hua-Kun Liu, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

A novel porous graphene paper is prepared via freeze drying a wet graphene oxide gel, followed by thermal and chemical reduction. The macroscopic structure of the formed graphene paper can be tuned by the water content in the gel precursor. With 92% water content, an interconnected macroporous network can be formed. This porous graphene (PG) paper exhibits excellent electrochemical properties. It can deliver a high discharge capacity of 420 mA h g−1 at a current density of 2000 mA g−1 when used as binder-free lithium ion battery anode. PG paper exhibits a specific capacitance of 137 F g …


3d Hierarchical Porous Graphene Aerogel With Tunable Meso-Pores On Graphene Nanosheets For High-Performance Energy Storage, Long Ren, K N. Hui, K S. Hui, Yundan Liu, Xiang Qi, Jianxin Zhong, Yi Du, Jianping Yang Jan 2015

3d Hierarchical Porous Graphene Aerogel With Tunable Meso-Pores On Graphene Nanosheets For High-Performance Energy Storage, Long Ren, K N. Hui, K S. Hui, Yundan Liu, Xiang Qi, Jianxin Zhong, Yi Du, Jianping Yang

Australian Institute for Innovative Materials - Papers

New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable mesopores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a …


Sodium And Lithium Storage Properties Of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres, Sujith Kalluri, Kuok Hau Seng, Zaiping Guo, Aijun Du, Konstantin K. Konstantinov, Hua-Kun Liu, S X. Dou Jan 2015

Sodium And Lithium Storage Properties Of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres, Sujith Kalluri, Kuok Hau Seng, Zaiping Guo, Aijun Du, Konstantin K. Konstantinov, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high …


Flexible Electrodes And Electrolytes For Energy Storage, Caiyun Wang, Gordon G. Wallace Jan 2015

Flexible Electrodes And Electrolytes For Energy Storage, Caiyun Wang, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The advent of flexible, wearable electronics has placed new demands on energy storage systems. The demands for high energy density achieved through the use of highly conducting materials with high surface area that enable facile electrochemical processes must now be coupled with the need for robustness and flexibility in each of the components: electrodes and electrolytes. This perspective provides an overview of materials and fabrication protocols used to produce flexible electrodes and electrolytes. We also discuss the key challenges in the development of high performance flexible energy storage devices. Only selected references are used to illustrate the myriad of developments …


Porous Nanoarchitectures Of Spinel-Type Transition Metal Oxides For Electrochemical Energy Storage Systems, Min-Sik Park, Jeonghun Kim, Ki Jae Kim, Jongwon Lee, Jung Ho Kim, Yusuke Yamauchi Jan 2015

Porous Nanoarchitectures Of Spinel-Type Transition Metal Oxides For Electrochemical Energy Storage Systems, Min-Sik Park, Jeonghun Kim, Ki Jae Kim, Jongwon Lee, Jung Ho Kim, Yusuke Yamauchi

Australian Institute for Innovative Materials - Papers

Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. …


Guanidinium Octahydrotriborate: An Ionic Liquid With High Hydrogen Storage Capacity, Weidong Chen, Zhenguo Huang, Guotao Wu, Teng He, Zhao Li, Juner Chen, Zaiping Guo, Hua-Kun Liu, Ping Chen Jan 2015

Guanidinium Octahydrotriborate: An Ionic Liquid With High Hydrogen Storage Capacity, Weidong Chen, Zhenguo Huang, Guotao Wu, Teng He, Zhao Li, Juner Chen, Zaiping Guo, Hua-Kun Liu, Ping Chen

Australian Institute for Innovative Materials - Papers

For chemical hydrogen storage, capacity is one key criterion that has spurred intense efforts to investigate compounds with high hydrogen content. The guanidinium cation and the octahydrotriborate anion possess 6 H+ and 8 H-, respectively. The combination of these two ions yields guanidinium octahydrotriborate with 13.8 wt% hydrogen. This paper presents its facile synthesis, as confirmed by 11B and 1H nuclear magnetic resonance spectroscopy. The results show that guanidinium octahydrotriborate is an ionic liquid with a melting point below -10°C, which makes it a possible injectable/pumpable hydrogen carrier. It decomposes selectively to hydrogen, in stark …


Hierarchical Porous Li 2 Mg(Nh)2@C Nanowires With Long Cycle Life Towards Stable Hydrogen Storage, Guanglin Xia, Yingbin Tan, Dan Li, Zaiping Guo, Hua-Kun Liu, Zongwen Liu, Xuebin Yu Jan 2014

Hierarchical Porous Li 2 Mg(Nh)2@C Nanowires With Long Cycle Life Towards Stable Hydrogen Storage, Guanglin Xia, Yingbin Tan, Dan Li, Zaiping Guo, Hua-Kun Liu, Zongwen Liu, Xuebin Yu

Australian Institute for Innovative Materials - Papers

The hierarchical porous Li2Mg(NH)2@C nanowires full of micropores, mesopores, and macropores are successfully fabricated via a single-nozzle electrospinning technique combined with in-situ reaction between the precursors, i.e., MgCl2 and LiN3, under physical restriction upon thermal annealing. The explosive decomposition of LiN3 well dispersed in the electrospun nanowires during carbothermal treatment induces a highly porous structure, which provides a favourable way for H2 delivering in and out of Li2Mg(NH)2 nanoparticles simultaneously realized by the space-confinement of the porous carbon coating. As a result, the thus-fabricated Li2Mg(NH)2 …


Porous Ni0.5zn0.5fe2o4 Nanospheres: Synthesis, Characterization, And Application For Lithium Storage, Min Zhang, Xuanwen Gao, Zhenfa Zi, Jianming Dai, Jiazhao Wang, Shulei Chou, Changhao Liang, Xuebin Zhu, Yuping Sun, Hua-Kun Liu Jan 2014

Porous Ni0.5zn0.5fe2o4 Nanospheres: Synthesis, Characterization, And Application For Lithium Storage, Min Zhang, Xuanwen Gao, Zhenfa Zi, Jianming Dai, Jiazhao Wang, Shulei Chou, Changhao Liang, Xuebin Zhu, Yuping Sun, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Monodisperse porous Ni0.5Zn0.5Fe2O4 nanospheres have been successfully synthesized by the solvothermal method. The diameter of the nanospheres can be tuned by controlling the reactant concentration. Lower reactant concentration is favoured for the synthesis of mesoporous Ni0.5Zn0.5Fe2O4 nanospheres with higher surface area. The electrochemical results show that mesoporous Ni0.5Zn0.5Fe2O4 nanospheres exhibit high reversible specific capacity (1110 mAh g-1) for Li storage and high capacity retention, with 700 mAh g-1 retained up to 50 cycles. The excellent electrochemical properties could be attributed to the large surface area and mesoporous structure. The results suggest that Ni0.5Zn0.5Fe2O4 could be a promising high capacity anode …


Graphene-Based Nanocomposites For Energy Storage And Conversion In Lithium Batteries, Supercapacitors And Fuel Cells, Nasir Mahmood, Chenzhen Zhang, Han Yin, Yanglong Hou Jan 2014

Graphene-Based Nanocomposites For Energy Storage And Conversion In Lithium Batteries, Supercapacitors And Fuel Cells, Nasir Mahmood, Chenzhen Zhang, Han Yin, Yanglong Hou

Australian Institute for Innovative Materials - Papers

Due to their unique properties, together with their ease of synthesis and functionalization, graphene-based materials have been showing great potential in energy storage and conversion. These hybrid structures display excellent material characteristics, including high carrier mobility, faster recombination rate and long-time stability. In this review, after a short introduction to graphene and its derivatives, we summarize the recent advances in the synthesis and applications of graphene and its derivatives in the fields of energy storage (lithium ion, lithium-air, lithium-sulphur batteries and supercapacitors) and conversion (oxygen reduction reaction for fuel cells). This article further highlights the working principles and problems hindering …


A Solvothermal Strategy: One-Step In Situ Synthesis Of Self-Assembled 3d Graphene-Based Composites With Enhanced Lithium Storage Capacity, Jingjing Ma, Jiulin Wang, Yu-Shi He, Xiao Zhen Liao, Jun Chen, Jiazhao Wang, Tao Yuan, Zi-Feng Ma Jan 2014

A Solvothermal Strategy: One-Step In Situ Synthesis Of Self-Assembled 3d Graphene-Based Composites With Enhanced Lithium Storage Capacity, Jingjing Ma, Jiulin Wang, Yu-Shi He, Xiao Zhen Liao, Jun Chen, Jiazhao Wang, Tao Yuan, Zi-Feng Ma

Australian Institute for Innovative Materials - Papers

A facile and controllable approach has been developed to synthesize three-dimensional (3D) graphene-based monoliths. Here, as a proof-of-concept experiment, self-assembled 3D CoO/graphene sheets (CoO/GS) composites with porous structures have been successfully fabricated in an ethanol medium by a one-step, in situ growth, solvothermal method. During the process, the in situ nucleation and growth of CoO particles on GS were tuned by the formation of a 3D GS network. In the as-prepared composites, the self-assembled 3D GS network around the CoO particles can not only provide a 3D conductive matrix, but also buffer the volume changes of CoO and restrain the …