Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 63

Full-Text Articles in Physical Sciences and Mathematics

Flexible And Free-Standing Siox/Cnt Compositefilms For High Capacityand Durable Lithium Ion Batteries, Wenlei Guo, Xiao Yan, Feng Hou, Lei Wen, Yejing Dai, Deming Yang, Xiaotong Jiang, Jian Liu, Ji Liang, Shi Xue Dou Jan 2019

Flexible And Free-Standing Siox/Cnt Compositefilms For High Capacityand Durable Lithium Ion Batteries, Wenlei Guo, Xiao Yan, Feng Hou, Lei Wen, Yejing Dai, Deming Yang, Xiaotong Jiang, Jian Liu, Ji Liang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Flexible and free-standing electrode materials are prerequisite and key components for next-generation flexible energy storage and conversion devices. However, it is still a chanllenge to fabricate these materials from a continuous, straightforward, and facile method. Herein, we report a flexible composite film with silicon oxides decorated on few-walled carbon nanotubes, which can be continuously fabricated and directly drawn from the hot zone of the reactor. The composite film can be readily used for electrochemical lithium ion storage with high and reversible specific capacity, good rate capability, and excellent cycling performance. These exceptional characteristics make it very promising for flexible energy …


Structure And Electrochemical Performance Modulation Of A Lini0.8co0.1mn0.1o2 Cathode Material By Anion And Cation Co-Doping For Lithium Ion Batteries, Rong Li, Yong Ming, Wei Xiang, Chunliu Xu, Guilin Feng, Yongchun Li, Yanxiao Chen, Zhenguo Wu, Ben-He Zhong, Xiaodong Guo Jan 2019

Structure And Electrochemical Performance Modulation Of A Lini0.8co0.1mn0.1o2 Cathode Material By Anion And Cation Co-Doping For Lithium Ion Batteries, Rong Li, Yong Ming, Wei Xiang, Chunliu Xu, Guilin Feng, Yongchun Li, Yanxiao Chen, Zhenguo Wu, Ben-He Zhong, Xiaodong Guo

Australian Institute for Innovative Materials - Papers

Ni-rich layered transition metal oxides show great energy density but suffer poor thermal stability and inferior cycling performance, which limit their practical application. In this work, a minor content of Co and B were co-doped into the crystal of a Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2) using cobalt acetate and boric acid as dopants. The results analyzed by XRD, TEM, XPS and SEM reveal that the modified sample shows a reduced energy barrier for Li+ insertion/extraction and alleviated Li+/Ni2+ cation mixing. With the doping of B and Co, corresponding enhanced cycle stability was achieved with a high capacity retention of 86.1% at 1.0C …


Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu Jan 2019

Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

CoSe2-SnSe2/NC nanocubes (CSNC@NC) coated by nitrogen-doped carbon (NC) were synthesized successfully by an ordinary pyrazole polymerization and carbonization process. In comparison with bare CSNC, the CSNC@NC composite exhibited good structural stability and improved electrical conductivity when used as anode. The CSNC@NC electrode showed a stable Li storage capacity (730.41 mAh g−1 over 100 cycles at 0.2 A g−1) and excellent rate performance (402.10 mAh g−1 at 2 A g−1). For Na storage, the discharge capacity could be maintained 279.3 mAh g−1 over 100 cycles at 0.2 A g−1; the lower capacity than that for Li storage maybe caused by the …


A Green And Facile Way To Prepare Granadilla-Like Silicon-Based Anode Materials For Li-Ion Batteries, Lei Zhang, Ranjusha Rajagopalan, Haipeng Guo, Xianluo Hu, S X. Dou, Hua-Kun Liu Jan 2016

A Green And Facile Way To Prepare Granadilla-Like Silicon-Based Anode Materials For Li-Ion Batteries, Lei Zhang, Ranjusha Rajagopalan, Haipeng Guo, Xianluo Hu, S X. Dou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

A yolk-shell-structured carbon@void@silicon (CVS) anode material in which a void space is created between the inside silicon nanoparticle and the outer carbon shell is considered as a promising candidate for Li-ion cells. Untill now, all the previous yolk-shell composites were fabricated through a templating method, wherein the SiO2 layer acts as a sacrificial layer and creates a void by a selective etching method using toxic hydrofluoric acid. However, this method is complex and toxic. Here, a green and facile synthesis of granadilla-like outer carbon coating encapsulated silicon/carbon microspheres which are composed of interconnected carbon framework supported CVS nanobeads is reported. …


Si-Containing Precursors For Si-Based Anode Materials Of Li-Ion Batteries: A Review, Lei Zhang, Xiaoxiao Liu, Qianjin Zhao, Shi Xue Dou, Hua-Kun Liu, Yunhui Huang, Xianluo Hu Jan 2016

Si-Containing Precursors For Si-Based Anode Materials Of Li-Ion Batteries: A Review, Lei Zhang, Xiaoxiao Liu, Qianjin Zhao, Shi Xue Dou, Hua-Kun Liu, Yunhui Huang, Xianluo Hu

Australian Institute for Innovative Materials - Papers

Lithium-ion batteries with high energy density are in demand for consumer electronics, electric vehicles, and grid-scale stationary energy storage. Si is one of the most promising anode materials due to its extremely high specific capacity. However, the full application of Si-based anode materials is limited by poor cycle life and rate capability resulted from low ionic/electronic conductivity and large volume change over cycling. In recent years, great progress has been made in improving the performance of Si anodes by employing nanotechnology. The preparation methods are essentially important, in which the precursors used are crucial to design and control the microstructure …


Mos2 With An Intercalation Reaction As A Long-Life Anode Material For Lithium Ion Batteries, Zhe Hu, Qiannan Liu, Weiyi Sun, Weijie Li, Zhanliang Tao, Shulei Chou, Jun Chen, S X. Dou Jan 2016

Mos2 With An Intercalation Reaction As A Long-Life Anode Material For Lithium Ion Batteries, Zhe Hu, Qiannan Liu, Weiyi Sun, Weijie Li, Zhanliang Tao, Shulei Chou, Jun Chen, S X. Dou

Australian Institute for Innovative Materials - Papers

MoS2 with expanded layers was synthesized and characterized as an anode material for lithium ion batteries in an ether-based electrolyte by cutting off the terminal discharge voltage at 1.0 V to prevent a MoS2 conversion reaction. The as-prepared MoS2 achieved 96% capacity retention even after 1400 cycles and showed good performance in a full cell with LiCoO2 as the counter electrode.


Electrochemically Active, Novel Layered M-Znv2o6 Nanobelts For Highly Rechargeable Na-Ion Energy Storage, Yan Sun, Chun-Sheng Li, Qiuran Yang, Shulei Chou, Hua-Kun Liu Jan 2016

Electrochemically Active, Novel Layered M-Znv2o6 Nanobelts For Highly Rechargeable Na-Ion Energy Storage, Yan Sun, Chun-Sheng Li, Qiuran Yang, Shulei Chou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Electrode materials with a three-dimensional (3D) layered framework and excellent electrochemical stability can provide a new avenue for enhancing the overall performance of promising sodium ion batteries. Here, we show that layered monoclinic (m) - ZnV2O6 nanobelts with high chemical activity for Na-ion energy storage have been effectively fabricated via a rapid microwave irradiation method over the reaction time of 8 h, in which the fabricating efficiency is 24.5 times greater in comparison with the traditional hydrothermal method. The morphology and phase evolutions were verified by means of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study also …


Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang Jan 2016

Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Nitrogen-doped carbon coated Co 3 O 4 nanoparticles (Co 3 O 4 @NC) with high Na-ion storage capacity and unprecedented long-life cycling stability are reported in this paper. The Co 3 O 4 @NC was derived from a metal – organic framework ZIF-67, where the Co ions and organic linkers were, respectively, converted to Co 3 O 4 nanoparticle cores and nitrogen-doped carbon shells through a controlled two-step annealing process. The Co 3 O 4 @NC shows a porous nature with a surface area of 101 m 2 g 1 . When applied as an anode for sodium ion batteries …


3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun Jan 2015

3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun

Australian Institute for Innovative Materials - Papers

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible …


Crystalline Tio2@C Nanosheet Anode With Enhanced Rate Capability For Lithium-Ion Batteries, Fan Yang, Yuxuan Zhu, Xiu Li, Chao Lai, Wei Guo, Jianmin Ma Jan 2015

Crystalline Tio2@C Nanosheet Anode With Enhanced Rate Capability For Lithium-Ion Batteries, Fan Yang, Yuxuan Zhu, Xiu Li, Chao Lai, Wei Guo, Jianmin Ma

Australian Institute for Innovative Materials - Papers

TiO2@C nanosheets have been obtained by a facile solvothermal method using titanate butoxide and hydrofluoric acid as precursors, followed by our novel carbon coating technique using oleic acid as the carbon source. The TiO2@C nanosheet anode shows a high discharge capacity of 145.8 mA h g-1 after 50 cycles and excellent rate capability.


Spatially-Confined Lithiation-Delithiation In Highly Dense Nanocomposite Anodes Towards Advanced Lithium-Ion Batteries, Yinzhu Jiang, Yong Li, Wenping Sun, Wei Huang, Jiabin Liu, Ben Xu, Chuanhong Jin, Tianyu Ma, Changzheng Wu, Mi Yan Jan 2015

Spatially-Confined Lithiation-Delithiation In Highly Dense Nanocomposite Anodes Towards Advanced Lithium-Ion Batteries, Yinzhu Jiang, Yong Li, Wenping Sun, Wei Huang, Jiabin Liu, Ben Xu, Chuanhong Jin, Tianyu Ma, Changzheng Wu, Mi Yan

Australian Institute for Innovative Materials - Papers

Spatially-confined electrochemical reactions are firstly realized in a highly dense nanocomposite anode for high performance lithium ion batteries. The spatially-confined lithiation-delithiation effectively avoids inter-cluster migration and perfectly retains full structural integrity. Large reversible capacity, high rate capability and superior cycling stability are achieved simultaneously. This spatially-confined lithiation-delithiation offers novel insight to enhance cycling performance of high capacity anode materials.


Surface Engineering And Design Strategy For Surface-Amorphized Tio 2 @Graphene Hybrids For High Power Li-Ion Battery Electrodes, Tengfei Zhou, Yang Zheng, Hong Gao, Shudi Min, Sean Li, Hua-Kun Liu, Zaiping Guo Jan 2015

Surface Engineering And Design Strategy For Surface-Amorphized Tio 2 @Graphene Hybrids For High Power Li-Ion Battery Electrodes, Tengfei Zhou, Yang Zheng, Hong Gao, Shudi Min, Sean Li, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Electrode materials with battery-like high capacity and capacitorlike rate performance are highly desirable, since they would signifi cantly advance next-generation energy storage technology. [ 1 ] TiO 2 has received increasing attention as an anode material for lithium-ion batteries (LIBs) due to its good reversible capacity and low volume expansion upon lithiation, as well as its low cost and safe lithiation potential. [ 2 ] The low lithium-ion mobility within the crystalline phase TiO 2 , however, together with its poor electrical conductivity, means that only a thin surface layer of the host material is available for Li intercalation at …


Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han Jan 2015

Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han

Australian Institute for Innovative Materials - Papers

The capacity of manganese dioxide (MnO2) deteriorates with cycling due to the irreversible changes induced by the repeated lithiation and delithiation processes. To overcome this drawback, MnO2/nitrogen-doped graphene hybrid aerogels (MNGAs) were prepared via a facile redox process between KMnO4 and carbon within nitrogen-doped graphene hydrogels. The three-dimensional nitrogen-doped graphene hydrogels were prepared and utilized as matrices for MnO2 deposition. The MNGAs-120 obtained after a deposition time of 120 min delivered a very high discharge capacity of 909 mA h g-1 after 200 cycles at a current density of 400 mA g-1 …


Unique Urchin-Like Ca2ge7o16 Hierarchical Hollow Microspheres As Anode Material For The Lithium Ion Battery, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo Jan 2015

Unique Urchin-Like Ca2ge7o16 Hierarchical Hollow Microspheres As Anode Material For The Lithium Ion Battery, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Germanium is an outstanding anode material in terms of electrochemical performance, especially rate capability, but its developments are hindered by its high price because it is rare in the crust of earth, and its huge volume variation during the lithium insertion and extraction. Introducing other cheaper elements into the germanium-based material is an efficient way to dilute the high price, but normally sacrifice its electrochemical performance. By the combination of nanostructure design and cheap element (calcium) introduction, urchin-like Ca2Ge7O16 hierarchical hollow microspheres have been successfully developed in order to reduce the price and maintain the …


Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei Jan 2015

Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei

Australian Institute for Innovative Materials - Papers

Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically …


Sodium-Difluoro(Oxalato)Borate (Nadfob): A New Electrolyte Salt For Na-Ion Batteries, Juner Chen, Zhenguo Huang, Caiyun Wang, Spencer H. Porter, Baofeng Wang, Wilford Lie, Hua-Kun Liu Jan 2015

Sodium-Difluoro(Oxalato)Borate (Nadfob): A New Electrolyte Salt For Na-Ion Batteries, Juner Chen, Zhenguo Huang, Caiyun Wang, Spencer H. Porter, Baofeng Wang, Wilford Lie, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possesses good stability and generates no toxic or dangerous products when exposed to air and water. All these properties demonstrate that NaDFOB could be used to prepare high performance electrolytes for emerging Na-ion batteries.


Growth Of Mos2@C Nanobowls As A Lithium-Ion Battery Anode Material, Chunyu Cui, Xiu Li, Zhe Hu, Jiantie Xu, Hua-Kun Liu, Jianmin Ma Jan 2015

Growth Of Mos2@C Nanobowls As A Lithium-Ion Battery Anode Material, Chunyu Cui, Xiu Li, Zhe Hu, Jiantie Xu, Hua-Kun Liu, Jianmin Ma

Australian Institute for Innovative Materials - Papers

Layered MoS2 has attracted much attention as a promising anode material for lithium ion batteries. The intrinsically poor electrical/ionic conductivity, volume expansion and pulverization, stress accumulation and unstable solid-electrolyte interface formation within MoS2 electrodes during the lithiation-delithiation process significantly result in their fast capacity fading, poor rate capability and cycle life. To address these critical issues, a novel nanobowl structure for MoS2 with a carbon coating (MoS2@C-400, 500, 600) is successfully fabricated by a facile solvothermal method, followed by a post-annealing process. The fabricated MoS2@C-600 and MoS2@C-500 exhibited high reversible capacities of 1164.4 and 1076.4 mA h g-1 at 0.2C, …


Integration Of Mno@Graphene With Graphene Networks Towards Li-Ion Battery Anodes, Wei Guo, Xiu Li, Dickon Ng, Jianmin Ma Jan 2015

Integration Of Mno@Graphene With Graphene Networks Towards Li-Ion Battery Anodes, Wei Guo, Xiu Li, Dickon Ng, Jianmin Ma

Australian Institute for Innovative Materials - Papers

In this work, we have directly integrated MnO@graphene with graphene networks through the thermal decomposition of a Mn-oleate complex in an Ar atmosphere at high temperatures. By introducing dual protective graphene shells and networks, the as-synthesized MnO/graphene composites exhibited superior cycling performance.


Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou Jan 2015

Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou

Australian Institute for Innovative Materials - Papers

Silicon as an electrode suffers from short cycling life, as well as unsatisfactory rate-capability caused by the large volume expansion (~400%) and the consequent structural degradation during lithiation/delithiation processes. Here, we have engineered unique void-containing mesoporous carbon-encapsulated commercial silicon nanoparticles (NPs) in yolk-shell structures. In this design, the silicon NPs yolk are wrapped into open and accessible mesoporous carbon shells, the void space between yolk and shell provides enough room for Si expansion, meanwhile, the porosity of carbon shell enables fast transport of Li+ ions between electrolyte and silicon. Our ex-situ characterization clearly reveals for the first time that a …


A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo Jan 2015

A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus-obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium at carbon cubes (Ge at CC)), exhibits a high tap density …


Facile Method To Synthesize Na-Enriched Na1+Xfefe(Cn)6 Frameworks As Cathode With Superior Electrochemical Performance For Sodium-Ion Batteries, Weijie Li, Shulei Chou, Jiazhao Wang, Yong-Mook Kang, Jianli Wang, Yong Liu, Qinfen Gu, Hua-Kun Liu, S X. Dou Jan 2015

Facile Method To Synthesize Na-Enriched Na1+Xfefe(Cn)6 Frameworks As Cathode With Superior Electrochemical Performance For Sodium-Ion Batteries, Weijie Li, Shulei Chou, Jiazhao Wang, Yong-Mook Kang, Jianli Wang, Yong Liu, Qinfen Gu, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Different Na-enriched Na1+xFeFe(CN)6 samples can be synthesized by a facile one-step method, utilizing Na4Fe(CN)6 as the precursor in a different concentration of NaCl solution. As-prepared samples were characterized by a combination of synchrotron X-ray powder diffraction (S-XRD), Mössbauer spectroscopy, Raman spectroscopy, magnetic measurements, thermogravimetric analysis, X-ray photoelectron spectroscopy, and inductively coupled plasma analysis. The electrochemical results show that the Na1.56Fe[Fe(CN)6]·3.1H2O (PB-5) sample shows a high specific capacity of more than 100 mAh g-1 and excellent capacity retention of 97% over 400 cycles. The details structural evolution during …


Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen Jan 2015

Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen

Australian Institute for Innovative Materials - Papers

CuO powders composed of different rod-like clusters or dandelion-like nanospheres are prepared by a low-temperature thermal decomposition process of Cu(OH)2 precursors, which are obtained via a catalytic template method. A tentative mechanism is proposed to explain the formation and transformation of different Cu(OH)2 nanostructures. X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, field-emission scanning electron microscopy, transmission electron microscopy, infrared spectra analysis, Brunauer-Emmett-Teller measurements, and galvanostatic cell cycling are employed to characterize the structures and electrochemical performance of these CuO samples. The results show that these CuO samples obtained after 500 °C calcination have a stable cycling performance with a reversible …


Hollow Carbon Spheres With Encapsulated Germanium As An Anode Material For Lithium Ion Batteries, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo Jan 2015

Hollow Carbon Spheres With Encapsulated Germanium As An Anode Material For Lithium Ion Batteries, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel composite consisting of hollow carbon spheres with encapsulated germanium (Ge@HCS) was synthesized by introducing a germanium precursor into the porous-structured hollow carbon spheres. The carbon spheres not only function as a scaffold to hold the germanium and thus maintain the structural integrity of the composite, but also increase the electrical conductivity. The voids and vacancies that are formed after the reduction of germanium dioxide to germanium provide free space for accommodating the volume changes during discharging-charging processes, thus preventing pulverization. The obtained Ge@HCS composite exhibits excellent lithium storage performance, as revealed by electrochemical evaluation.


One-Pot Synthesis Of Ultra-Small Magnetite Nanoparticles On The Surface Of Reduced Graphene Oxide Nanosheets As Anodes For Sodium-Ion Batteries, Shaohua Zhang, Weijie Li, Bien Tan, Shulei Chou, Zhen Li, S X. Dou Jan 2015

One-Pot Synthesis Of Ultra-Small Magnetite Nanoparticles On The Surface Of Reduced Graphene Oxide Nanosheets As Anodes For Sodium-Ion Batteries, Shaohua Zhang, Weijie Li, Bien Tan, Shulei Chou, Zhen Li, S X. Dou

Australian Institute for Innovative Materials - Papers

Nanocomposites with ultra-small magnetite (Fe3O4) nanoparticles (approx. 3 nm) uniformly anchored on the surfaces of reduced graphene oxide (RGO) nanosheets were successfully synthesized for anodes in sodium-ion batteries by a novel single-step high-temperature coprecipitation approach. The best electrode delivers a reversible Na+ storage capacity of 204 mA h g-1 with excellent capacity retention, i.e., 98% of the second-cycle value was retained after 200 cycles.


Α-Fe2o3/Graphene Nanocomposite As Anode Material For Sodium-Ion Batteries With Enhanced Capacity Retention, Zhijia Zhang, Yunxiao Wang, Shulei Chou, Huijun Li, Hua-Kun Liu, Jiazhao Wang Jan 2014

Α-Fe2o3/Graphene Nanocomposite As Anode Material For Sodium-Ion Batteries With Enhanced Capacity Retention, Zhijia Zhang, Yunxiao Wang, Shulei Chou, Huijun Li, Hua-Kun Liu, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Among the different energy storage systems, rechargeable lithium-ion batteries (LIBs) have been widely applied in various portable electronic devices due to their high energy densities, long cycle life, and lack of significant memory effect [1]. For wide-scale implementation of renewable energy, LIBs, however, face challenges related to their safety, lifetime, and cost. Based on the wide availability and low cost of sodium, sodium-ion batteries (SIBs) have the potential for meeting the demands of large-scale and sustainable applications. Many cathode materials have been proposed, whereas only a few anode materials have been investigated for SIBs [2]. The sodium ion (1.02 Å) …


Microemulsion-Assisted Synthesis Of Nanosized Li-Mn-O Spinel Cathodes For High-Rate Lithium-Ion Batteries, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim, Maria Skyllas-Kazacos Jan 2014

Microemulsion-Assisted Synthesis Of Nanosized Li-Mn-O Spinel Cathodes For High-Rate Lithium-Ion Batteries, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim, Maria Skyllas-Kazacos

Australian Institute for Innovative Materials - Papers

Li1.16Mn1.84O4 nanoparticles (50-90 nm) with cubic spinel structure are synthesized by combining a microemulsion process to produce ultrafine Mn(OH)2 nanocrystals (3-8 nm) with a solid-state lithiation step. The nanostructured lithium-rich Li1.16Mn1.84O4 shows stable cycling performance and superior rate capabilities as compared with the corresponding bulk material, for example, the nano-sized Li1.16Mn1.84O4 electrode shows stable reversible capacities of 74 mAhg-1 during the 1000th cycle at a high rate of 40 C between 3.0 and 4.5 V. In addition, Li1.16Mn1.84O4 nanoparticles also show high Li storage properties over an enlarged voltage window of 2.0-4.5 V with high capacities and stable cyclability, for …


Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou Jan 2014

Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

A high performance Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The synchrotron X-ray diffraction analysis results confirmed that single-phase Li3V2(PO4)3 with monoclinic structure was obtained. Scanning electron microscope and transmission electron microscope images revealed that the as-prepared Li3V 2(PO4)3 was composed of nanowires and microsized particles. Electrochemical results demonstrated that the Li 3V2(PO4)3 electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g-1 and 103.4 mAh g-1, with a capacity retention of 99.3% and 95.9%, in the voltage ranges of 3.0-4.3 …


High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou Jan 2014

High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the …


Enhanced Sodium-Ion Battery Performance By Structural Phase Transition From Two-Dimensional Hexagonal-Sns2 To Orthorhombic-Sns, Tengfei Zhou, Wei Kong Pang, Chaofeng Zhang, Jianping Yang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo Jan 2014

Enhanced Sodium-Ion Battery Performance By Structural Phase Transition From Two-Dimensional Hexagonal-Sns2 To Orthorhombic-Sns, Tengfei Zhou, Wei Kong Pang, Chaofeng Zhang, Jianping Yang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Structural phase transitions can be used to alter the properties of a material without adding any additional elements and are therefore of significant technological value. It was found that the hexagonal-SnS2 phase can be transformed into the orthorhombic-SnS phase after an annealing step in an argon atmosphere, and the thus transformed SnS shows enhanced sodium-ion storage performance over that of the SnS2, which is attributed to its structural advantages. Here, we provide the first report on a SnS@graphene architecture for application as a sodium-ion battery anode, which is built from two-dimensional SnS and graphene nanosheets as complementary building blocks. The …


Microwave Autoclave Synthesized Multi-Layer Graphene/Single-Walled Carbon Nanotube Composites For Free-Standing Lithium-Ion Battery Anodes, Chao Zhong, Jia-Zhao Wang, David Wexler, Hua-Kun Liu Jan 2014

Microwave Autoclave Synthesized Multi-Layer Graphene/Single-Walled Carbon Nanotube Composites For Free-Standing Lithium-Ion Battery Anodes, Chao Zhong, Jia-Zhao Wang, David Wexler, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Multi-layer graphene sheets have been synthesized by a time-efficient microwave autoclave method and used to form composites in situ with single-walled carbon nanotubes. The application of these composites as flexible free-standing film electrodes was then investigated. According to the transmission electron microscopy and X-ray diffraction characterizations, the average d-spacing of the graphene-single-walled carbon nanotube composites was 0.41 nm, which was obviously larger than that of the as-prepared pure graphene (0.36 nm). The reversible Li-cycling properties of the free-standing films have been evaluated by galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. Results showed that the free-standing composite film with 70 wt% …