Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of Nevada, Las Vegas

Chemistry and Biochemistry Faculty Research

Series

Molecular data

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Inelastic, Exchange, And Reactive Processes In Rovibrationally Excited Collisions Of Hd With H, Boyi Zhou, Benhui Yang, Balakrishnan Naduvalath, B. K. Kendrick, Maodu Chen, P. C. Stancil Sep 2021

Inelastic, Exchange, And Reactive Processes In Rovibrationally Excited Collisions Of Hd With H, Boyi Zhou, Benhui Yang, Balakrishnan Naduvalath, B. K. Kendrick, Maodu Chen, P. C. Stancil

Chemistry and Biochemistry Faculty Research

The HD molecule is an important coolant in early universe chemistry models and a tracer of H2 in star-forming regions. Rate coefficients for collisional excitation and de-excitation of HD rotational and vibrational levels form important ingredients in astrophysical models. While collisions with He, H2, and H are the most important, available data for H + HD collisions are largely limited to temperatures less than 1000 K for the vibrational ground state, low-lying rotational levels of the v = 1 HD vibrational level, or computed without reactive contributions. Here, through explicit quantum scattering calculations, we report extensive data for rovibrational transitions …


Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil Jun 2019

Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil

Chemistry and Biochemistry Faculty Research

Rate coefficients for rotational transitions in HD induced by H2 impact for rotational levels of HD j ≤ 8 and temperatures 10 K ≤ T ≤ 5000 K are reported. The quantum mechanical close-coupling (CC) method and the coupled-states (CS) decoupling approximation are used to obtain the cross-sections employing the most recent highly accurate H2–H2 potential energy surface (PES). Our results are in good agreement with previous calculations for low-lying rotational transitions The cooling efficiency of HD compared with H2 and astrophysical applications are briefly discussed.


Collisional Quenching Of Highly Excited H2 Due To H2 Collisions, Yier Wan, B. H. Yang, P. C. Stancil, Balakrishnan Naduvalath, Nikhil J. Parekh, R. C. Forrey Jul 2018

Collisional Quenching Of Highly Excited H2 Due To H2 Collisions, Yier Wan, B. H. Yang, P. C. Stancil, Balakrishnan Naduvalath, Nikhil J. Parekh, R. C. Forrey

Chemistry and Biochemistry Faculty Research

Rate coefficients for pure rotational quenching in H2(ν 1 = 0, j 1) + H2(ν 2 = 0, j 2) collisions from initial levels of j 1 = 2–31 (j 2 = 0 or 1) to all lower rotational levels are presented. We carried out extensive quantum mechanical close-coupling calculations based on a recently published H2–H2 potential energy surface (PES) developed by Patkowski et al. that has been demonstrated to be more reliable than previous work. Rotational transition cross sections with initial levels of j 1 = 2–14, 18, 19, 24, and 25 were computed for energies ranging from 10−6 …