Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Dirichlet Problems In Perforated Domains, Robert Righi Jan 2024

Dirichlet Problems In Perforated Domains, Robert Righi

Theses and Dissertations--Mathematics

We establish W1,p estimates for solutions uε to the Laplace equation with Dirichlet boundary conditions in a bounded C1 domain Ωε, η perforated by small holes in ℝd. The bounding constants will depend explicitly on epsilon and eta, where epsilon is the order of the minimal distance between holes, and eta denotes the ratio between the size of the holes and epsilon. The proof relies on a large-scale Lp estimate for ∇uε, whose proof is divided into two main parts. First, we show that solutions of an intermediate problem for a …


Uniform Regularity Estimates For The Stokes System In Perforated Domains, Jamison R. Wallace Jan 2024

Uniform Regularity Estimates For The Stokes System In Perforated Domains, Jamison R. Wallace

Theses and Dissertations--Mathematics

We consider the Stokes equations in an unbounded domain $\omega_{\epsilon,\eta}$ perforated by small obstacles, where $\epsilon$ represents the minimal distance between obstacles and $\eta$ is the ratio between the obstacle size and $\epsilon$. We are able to obtain uniform $W^{1,q}$ estimates for solutions to the Stokes equations in such domains with bounding constants depending explicitly on $\epsilon$ and $\eta$.


Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace Jan 2021

Predicting Material Properties: Applications Of Multi-Scale Multiphysics Numerical Modeling To Transport Problems In Biochemical Systems And Chemical Process Engineering, Tom Pace

Theses and Dissertations--Physics and Astronomy

Material properties are used in a wide variety of theoretical models of material behavior. Descriptive properties quantify the nature, structure, or composition of the material. Behavioral properties quantify the response of the material to an imposed condition. The central question of this work concerns the prediction of behavioral properties from previously determined descriptive properties through hierarchical multi-scale, multiphysics models implemented as numerical simulations. Applications covered focus on mass transport models, including sequential enzyme-catalyzed reactions in systems biology, and an industrial chemical process in a common reaction medium.


Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell Jan 2018

Homogenization In Perforated Domains And With Soft Inclusions, Brandon C. Russell

Theses and Dissertations--Mathematics

In this dissertation, we first provide a short introduction to qualitative homogenization of elliptic equations and systems. We collect relevant and known results regarding elliptic equations and systems with rapidly oscillating, periodic coefficients, which is the classical setting in homogenization of elliptic equations and systems. We extend several classical results to the so called case of perforated domains and consider materials reinforced with soft inclusions. We establish quantitative H1-convergence rates in both settings, and as a result deduce large-scale Lipschitz estimates and Liouville-type estimates for solutions to elliptic systems with rapidly oscillating periodic bounded and measurable coefficients. Finally, …


Homogenization Of Stokes Systems With Periodic Coefficients, Shu Gu Jan 2016

Homogenization Of Stokes Systems With Periodic Coefficients, Shu Gu

Theses and Dissertations--Mathematics

In this dissertation we study the quantitative theory in homogenization of Stokes systems. We study uniform regularity estimates for a family of Stokes systems with rapidly oscillating periodic coefficients. We establish interior Lipschitz estimates for the velocity and L estimates for the pressure as well as Liouville property for solutions in ℝd. We are able to obtain the boundary W{1,p} estimates in a bounded C1 domain for any 1 < p < ∞. We also study the convergence rates in L2 and H1 of Dirichlet and Neumann problems for Stokes systems with rapidly oscillating periodic coefficients, without any regularity assumptions on the coefficients.