Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

New Benzene Absorption Cross Sections In The Vuv, Relevance For Titan’S, Fernando J. Capalbo, Yves Bénilan, Nicolas Fray, Martin Schwell, Norbert Champion, Et-Touhami Es-Sebbar, Tommi T. Koskinen, Ivan Lehocki, Roger V. Yelle Oct 2015

New Benzene Absorption Cross Sections In The Vuv, Relevance For Titan’S, Fernando J. Capalbo, Yves Bénilan, Nicolas Fray, Martin Schwell, Norbert Champion, Et-Touhami Es-Sebbar, Tommi T. Koskinen, Ivan Lehocki, Roger V. Yelle

Dr. Et-touhami Es-sebbar

Benzene is an important molecule in Titan’s atmosphere because it is a potential link between the gas phase and the organic solid phase. We measured photoabsorption in the ultraviolet by benzene gas at temperatures covering the range from room temperature to 215 K. We derived benzene absorption cross sections and analyzed them in terms of the transitions observed. No significant variation with measurement temperature was observed. We discuss the implications of our measurements for the derivation of benzene abundance profiles in Titan’s thermosphere, by the Cassini/Ultraviolet Imaging Spectrograph (UVIS). The use of absorption cross sections at low temperature is recommended …


Temperature-Dependent Photoabsorption Cross-Section Of Cyano-Diacetylene In The Vacuum Uv, N. Fray, Y. Bénilan, M.-C. Gazeau, A. Jolly, M. Schwell, E. Arzoumanian, Et. Es-Sebbar, T. Ferradaz, J.- C. Guillemin Jun 2010

Temperature-Dependent Photoabsorption Cross-Section Of Cyano-Diacetylene In The Vacuum Uv, N. Fray, Y. Bénilan, M.-C. Gazeau, A. Jolly, M. Schwell, E. Arzoumanian, Et. Es-Sebbar, T. Ferradaz, J.- C. Guillemin

Dr. Et-touhami Es-sebbar

Using synchrotron radiation as a tunable VUV light source, we have measured, for the first time, the absolute photoabsorption cross sections of HC5N with a spectral resolution of 0.05 nm in the region between 80 and 205 nm from 233 to 298 K. The measured cross sections are used to predict the HC5N photodestruction rate in the solar system and to model a transmission spectrum in Titan's atmosphere. Comparing the latter with that acquired by the Ultraviolet Imaging Spectrograph on board the Cassini spacecraft, we have determined an upper limit of 2.7 × 10−5 on the HC5N abundance at 1100 …