Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Physical Sciences and Mathematics

Glacial Meltwater Modeling To Simulate Lake Water Budget (1996-2013) In Taylor Valley, Antarctica, Julian Michael Cross Jan 2020

Glacial Meltwater Modeling To Simulate Lake Water Budget (1996-2013) In Taylor Valley, Antarctica, Julian Michael Cross

Dissertations and Theses

The McMurdo Dry Valleys (MDV), the largest ice-free region (4,500 km2) in Antarctica, are a polar desert with an average annual temperature of -18ºC. In Taylor Valley, one of the MDV, closed-basin, perennially ice-covered lakes occupy the valley floor. Their water balance is controlled by inflow from glacial meltwater runoff and loss due to sublimation, making them sensitive indicators of climate. In this study, a physically-based model of glacier meltwater and lake ice sublimation is adapted to explain modern (1996 to 2013) lake-level variations. Meltwater model results were improved by the inclusion of MODIS remotely-sensed albedo measurements (E …


Evaluating The Impact And Distribution Of Stormwater Green Infrastructure On Watershed Outflow, Benjamin Fahy Jan 2019

Evaluating The Impact And Distribution Of Stormwater Green Infrastructure On Watershed Outflow, Benjamin Fahy

Dissertations and Theses

Green Stormwater Infrastructure (GSI) has become a popular method for flood mitigation as it can prevent runoff from entering streams during heavy precipitation. In this study, a recently developed neighborhood in Gresham, Oregon hosts a comparison of various GSI projects on runoff dynamics. The study site includes dispersed GSI (rain gardens, retention chambers, green streets) and centralized GSI (bioswales, detention ponds, detention pipes). For the 2017-2018 water year, hourly rainfall and observed discharge data is used to calibrate the EPA's Stormwater Management Model to simulate rainfall-runoff dynamics, achieving a Nash-Sutcliffe efficiency of 0.75 and Probability Bias statistic of 3.3%. A …


Improved Drought Resilience Through Continuous Water Service Monitoring And Specialized Institutions—A Longitudinal Analysis Of Water Service Delivery Across Motorized Boreholes In Northern Kenya, Nick Turman-Bryant, Corey L. Nagel, Lauren Stover, Christian Muragijimana, Evan A. Thomas Jan 2019

Improved Drought Resilience Through Continuous Water Service Monitoring And Specialized Institutions—A Longitudinal Analysis Of Water Service Delivery Across Motorized Boreholes In Northern Kenya, Nick Turman-Bryant, Corey L. Nagel, Lauren Stover, Christian Muragijimana, Evan A. Thomas

Systems Science Faculty Publications and Presentations

Increasing frequency and severity of drought is driving increased use of groundwater resources in arid regions of Northern Kenya, where approximately 2.5 million people depend on groundwater for personal use, livestock, and limited irrigation. As part of a broader effort to provide more sustainable water, sanitation, and hygiene services in the region, we have collected data related to site functionality and use for approximately 120 motorized boreholes across five counties. Using a multilevel model to account for geospatial and temporal clustering, we found that borehole sites, which counties had identified as strategic assets during drought, ran on average about 1.31 …


From Probabilistic Socio-Economic Vulnerability To An Integrated Framework For Flash Flood Prediction, Sepideh Khajehei Dec 2018

From Probabilistic Socio-Economic Vulnerability To An Integrated Framework For Flash Flood Prediction, Sepideh Khajehei

Dissertations and Theses

Flash flood is among the most hazardous natural disasters, and it can cause severe damages to the environment and human life. Flash floods are mainly caused by intense rainfall and due to their rapid onset (within six hours of rainfall), very limited opportunity can be left for effective response. Understanding the socio-economic characteristics involving natural hazards potential, vulnerability, and resilience is necessary to address the damages to economy and casualties from extreme natural hazards. The vulnerability to flash floods is dependent on both biophysical and socio-economic factors. This study provides a comprehensive assessment of socio-economic vulnerability to flash flood alongside …


Ensemble Data Assimilation For Flood Forecasting In Operational Settings: From Noah-Mp To Wrf-Hydro And The National Water Model, Mahkameh Zarekarizi Nov 2018

Ensemble Data Assimilation For Flood Forecasting In Operational Settings: From Noah-Mp To Wrf-Hydro And The National Water Model, Mahkameh Zarekarizi

Dissertations and Theses

The National Water Center (NWC) started using the National Water Model (NWM) in 2016. The NWM delivers state-of-the-science hydrologic forecasts in the nation. The NWM aims at operationally forecasting streamflow in more than 2,000,000 river reaches while currently river forecasts are issued for 4,000. The NWM is a specific configuration of the community WRF-Hydro Land Surface Model (LSM) which has recently been introduced to the hydrologic community. The WRF-Hydro model, itself, uses another newly-developed LSM called Noah-MP as the core hydrologic model. In WRF-Hydro, Noah-MP results (such as soil moisture and runoff) are passed to routing modules. Riverine water level …


A Multivariate Modeling Approach For Generating Ensemble Climatology Forcing For Hydrologic Applications, Sepideh Khajehei Jul 2015

A Multivariate Modeling Approach For Generating Ensemble Climatology Forcing For Hydrologic Applications, Sepideh Khajehei

Dissertations and Theses

Reliability and accuracy of the forcing data plays a vital role in the Hydrological Streamflow Prediction. Reliability of the forcing data leads to accurate predictions and ultimately reduction of uncertainty. Currently, Numerical Weather Prediction (NWP) models are developing ensemble forecasts for various temporal and spatial scales. However, it is proven that the raw products of the NWP models may be biased at the basin scale; unlike model grid scale, depending on the size of the catchment. Due to the large space-time variability of precipitation, bias-correcting the ensemble forecasts has proven to be a challenging task. In recent years, Ensemble Pre-Processing …


Streamflow Modeling Of Johnson Creek Subwatersheds Using The Precipitation Runoff Modeling System, Theophilus Matthew Malone Apr 2014

Streamflow Modeling Of Johnson Creek Subwatersheds Using The Precipitation Runoff Modeling System, Theophilus Matthew Malone

Civil and Environmental Engineering Master's Project Reports

Johnson Creek, in the Portland, Oregon metropolitan region, has several pollutants on the U.S. Environmental Protection Agency's (EPA) 303(d) list including excess heat, low dissolved oxygen, and harmful bacteria. Understanding streamflow response to precipitation events is an important component to evaluating water quality trends and calculating the Total Maximum Daily Load (TMDL) for pollutants of concern. Investigating the streamflow-precipitation relationship on the subwatershed scale can give insight to the hydrologic response of a given watershed. However, developing rating curves for several subwatersheds can be cost and time prohibitive. The objective of this project was to develop a hydrologic model using …


Towards Improving Drought Forecasts Across Different Spatial And Temporal Scales, Shahrbanou Madadgar Jan 2014

Towards Improving Drought Forecasts Across Different Spatial And Temporal Scales, Shahrbanou Madadgar

Dissertations and Theses

Recent water scarcities across the southwestern U.S. with severe effects on the living environment inspire the development of new methodologies to achieve reliable drought forecasting in seasonal scale. Reliable forecast of hydrologic variables, in general, is a preliminary requirement for appropriate planning of water resources and developing effective allocation policies. This study aims at developing new techniques with specific probabilistic features to improve the reliability of hydrologic forecasts, particularly the drought forecasts. The drought status in the future is determined by certain hydrologic variables that are basically estimated by the hydrologic models with rather simple to complex structures. Since the …


Ce-Qual-W2 Model And Model Set-Up, Scott A. Wells Nov 2013

Ce-Qual-W2 Model And Model Set-Up, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

Conference presentation that provides background information on the CE-QUAL-W2 water modeling software, with examples of its use and instructions on set-up and application.


Spokane River In Idaho And Washington Tmdl Water Quality And Hydrodynamic Modeling Quality Assurance Project Plan -- Draft, Scott A. Wells, Chris Berger Feb 2009

Spokane River In Idaho And Washington Tmdl Water Quality And Hydrodynamic Modeling Quality Assurance Project Plan -- Draft, Scott A. Wells, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

The focus of this present study is to perform the following tasks:

• Converting the Upper Spokane River CE‐QUAL‐W2 models (Washington and Idaho) to version 3.6

• Combining the Washington and Idaho models

• Reviewing and updating model boundary conditions

• Check model calibration

• Meet with stakeholders

• Develop and Run Modeling Scenarios

• Create reports on calibration and scenario runs


Pend Oreille River Model: Model Scenario Simulations, Robert Leslie Annear, Chris Berger, Scott A. Wells Oct 2007

Pend Oreille River Model: Model Scenario Simulations, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Idaho Department of Environmental Quality is interested in developing a temperature and water quality Total Maximum Daily Load (TMDL) allocation for the Pend Oreille River between the Long Bridge near the historical Lake Pend Oreille outlet and Albeni Falls Dam (U.S. Army Corps of Engineer’s reservoir) as shown in Figure 1.

This management scenario report is an update of a prior report. The management scenarios had to be rerun because of a modeling error made with the outflows rate of Albeni Falls Dam. The new calibration error statistics were compared with the old statistics in Appendix B: Model Calibration …


Pend Oreille River, Box Canyon Model: Model Scenario Simulations, Chris Berger, Robert Leslie Annear, Scott A. Wells Jul 2007

Pend Oreille River, Box Canyon Model: Model Scenario Simulations, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in developing a temperature Total Maximum Daily Load (TMDL) allocation for the Pend Oreille River between the Albeni Falls Dam (U.S. Army Corps of Engineer’s reservoir) and Box Canyon Dam as shown in Figure 1. The Pend Oreille drainage basin is shown in Figure 2. An existing model of the Box Canyon reach was updated from CE-QUALW2 Version 3.0 to Version 3.5. This current research involves improving the calibration of the original model (1997 and 1998) and expanding the model using 2004 as an additional data set for calibration.

The use of field …


Pend Oreille River, Box Canyon Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells Nov 2006

Pend Oreille River, Box Canyon Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The purpose of this study was to improve the existing Version 3.0 application of CE-QUAL-W2 of the Pend Oreille River between Box Canyon Dam and Albeni Falls Dam by performing the tasks outlined above. In addition, the use of field data from 2004 as an additional calibration year would improve the confidence in the model’s predictive ability for temperature. The model simulations were run from January 1st to December 31st in each of the 3 years of model simulation: 1997, 1998 and 2004.

The model chosen for development is CE-QUAL-W2 Version 3.5 (Cole and Wells, 2006). This is a twodimensional …


Idaho Pend Oreille River Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells Nov 2006

Idaho Pend Oreille River Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The objectives of this project were to:

• Develop a hydrodynamic and temperature model of Pend Oreille River using CE-QUAL-W2 Version 3.2

• Calibrate the CE-QUAL-W2 model to field data collected during 2004 and 2005 using the following water quality variables:

  • flow, water surface elevation, and velocity
  • temperature o dissolved oxygen
  • nutrients (NO3-N+NO2-N, NH4-N, PO4-P)
  • algae – chlorophyll a
  • BOD5 and dissolved organic matter and particulate organic matter compartments (both labile and refractory) for the organic matter cycling with algae
  • periphyton

The model chosen for development was CE-QUAL-W2 Version 3.2 (Cole and Wells, 2004). This is a two-dimensional unsteady hydrodynamic …


Ce-Qual-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic And Water Quality Model, Version 3.5, Thomas M. Cole, Scott A. Wells Jan 2006

Ce-Qual-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic And Water Quality Model, Version 3.5, Thomas M. Cole, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This manual documents the two-dimensional, laterally averaged, hydrodynamic and water quality model CE-QUAL-W2. This manual was prepared in the Environmental Laboratory (EL), us Army Engineer Waterways Experiment Station (WES), Vicksburg, MS. Bonita Niel and Dr. William Roper, CERD-C provided funding for Version 3.1 of the manual under the Numerical Model Maintenance Program. The principal investigator for Version 3.2 of CE-QUAL-W2 and the User Manual was Mr. Thomas M. Cole of the Water Quality and Contaminant Modeling Branch (WQCMB), Environmental Processes and Effects Division (EPED), EL. This report supersedes the Version 3.2 manual. Revisions made in this V3.5 manual were made …


Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup And Calibration For 2001 And 2004, Robert Leslie Annear, Scott A. Wells, Chris Berger Jul 2005

Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup And Calibration For 2001 And 2004, Robert Leslie Annear, Scott A. Wells, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

As a result of a Total Maximum Daily Load (TMDL) study of the Spokane River in Washington, a hydrodynamic and water quality model for the Spokane River was developed by Portland State University (PSU) for the Corps of Engineers and the Washington Department of Ecology from the Washington-Idaho state line to the outlet of Long Lake.

An earlier study of the Spokane River was undertaken by Limno-Tech (2001a, 2001b) for the domain shown in Figure 3. Limno-Tech used an earlier version of CE-QUAL-W2, Version 2, for the Reservoir portion of the Spokane River from Post Falls Dam to Coeur d’Alene …


Lake Whatcom Water Quality Model, Chris Berger Jul 2005

Lake Whatcom Water Quality Model, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

A water quality model of Lake Whatcom, Washington was developed as part of a Total Maximum Daily Load Study for the Washington Department of Ecology. Lake Whatcom is a large natural lake which is listed on the 1998 Washington State 303(d) list of waterbodies which do not meet the criterion for dissolved oxygen. Located next to the city of Bellingham, it is approximately 10 miles long and has a surface area of approximately 5000 acres and a maximum depth of over 100 meters. Eutrophication processes in the lake have been accelerated in recent years perhaps by the availability of nutrients …


Laurance Lake Temperature Model, Chris Berger, Scott A. Wells, Robert Leslie Annear Jun 2005

Laurance Lake Temperature Model, Chris Berger, Scott A. Wells, Robert Leslie Annear

Civil and Environmental Engineering Faculty Publications and Presentations

Laurance Lake is a reservoir located in Hood River County, Oregon (Figure 1). It is located at the base on Mt. Hood in Oregon (see Figure 2 and Figure 3), discharges into the Middle Fork of the Hood River. The reservoir was constructed in 1968 for irrigation storage and has a capacity 3564 acre- feet at full pool. Since the river vio lates temperature standards, this study has been designed to construct a hydrodynamic and temperature model of Laurance reservoir in order to assess strategies for improving temperatures in the Middle Fork River.

The objectives of the study are then …


Willamette River Basin Temperature Tmdl Model: Model Calibration, Chris Berger, Michael Lee Mckillip, Robert Leslie Annear, Sher Jamal Khan, Scott A. Wells Aug 2004

Willamette River Basin Temperature Tmdl Model: Model Calibration, Chris Berger, Michael Lee Mckillip, Robert Leslie Annear, Sher Jamal Khan, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Green River Ce-Qual-W2 Project: A Hydrodynamic And Water Quality Study Of The Green River King County, Washington, Tim Kraft, Robert Leslie Annear, Chris Berger, Scott A. Wells Jul 2004

Green River Ce-Qual-W2 Project: A Hydrodynamic And Water Quality Study Of The Green River King County, Washington, Tim Kraft, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This report describes the data processing and model calibration performed for a hydrodynamic and water quality model of the Green River, located in King County, Washington. Figure 1 shows the location of the river, and the limits of the section of river that was modeled.

The Green River flows from its headwaters in the Cascade Mountain foothills through the King County, Washington communities of Auburn, Kent, and Tukwila before discharging into the Duwamish River. Two sections of the river were modeled in this project. The Middle Green River begins in the Cascade Mountain foothills east of Tacoma, and continues downstream …


Willamette River Basin Temperature Tmdl Model: Model Scenarios, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells Apr 2004

Willamette River Basin Temperature Tmdl Model: Model Scenarios, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Review Of Spokane River Model For Washington Department Of Ecology, Chris Berger, Robert Leslie Annear, Scott A. Wells Jan 2004

Review Of Spokane River Model For Washington Department Of Ecology, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This memorandum discusses changes made to the Spokane River model calibration since the original calibration of the model discussed in the following reports: Annear et al. (2001), Berger at al. (2002), Slominski et al. (2002), and Berger et al. (2003). The first group of refinements was made by the Washington Department of Ecology. Additional changes were made by Portland State University (PSU) and were discussed in this report along with the results of two alternative calibrations. The last section displays the original calibration results from Berger et al. (2003) as a basis for comparison to the changes made by Ecology …


Willamette River Basin Temperature Tmdl Model: Boundary Conditions And Model Setup, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells Jan 2004

Willamette River Basin Temperature Tmdl Model: Boundary Conditions And Model Setup, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup For 2001, Scott A. Wells, Robert Leslie Annear, Chris Berger Apr 2003

Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup For 2001, Scott A. Wells, Robert Leslie Annear, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

The Spokane River in Idaho originates in Coeur d’Alene Lake (Figure 1 and Figure 2). The section of the Spokane River from Coeur d’Alene Lake to the Washington state line is the subject of a water quality study for the US Environmental Protection Agency. The objective of this study is to create a water quality and hydrodynamic model of the Spokane River in Idaho using CE-QUAL-W2 Version 3.1 (Cole and Wells, 2002).

Since the Spokane River is water quality limited, a hydrodynamic and water quality model for the Spokane River in Washington was developed by Portland State University for the …


Upper Spokane River Model: Model Calibration, 2001, Chris Berger, Robert Leslie Annear, Benjamin Welle Jan 2003

Upper Spokane River Model: Model Calibration, 2001, Chris Berger, Robert Leslie Annear, Benjamin Welle

Civil and Environmental Engineering Faculty Publications and Presentations

The Upper Spokane River system under consideration is located in the Northeastern part of Washington State and runs from the Stateline with Idaho, River mile (RM) 96.0, downstream to Long Lake dam at RM 32.5. Figure 1 shows the river system and an outline the boundaries of the City of Spokane.

The Washington Department of Ecology (Ecology) is interested in a water quality model for the Upper Spokane River system for use in developing Total Maximum Daily Loads (TMDLs). As a result, Ecology and the Corps of Engineers funded a study to develop a water quality and hydrodynamic model of …


Upper Spokane River Model: Boundary Conditions And Model Setup, 2001, Spencer Slominski, Robert Leslie Annear, Chris Berger, Scott A. Wells Dec 2002

Upper Spokane River Model: Boundary Conditions And Model Setup, 2001, Spencer Slominski, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in a water quality model for the Upper Spokane River system for use in developing Total Maximum Daily Loads (TMDLs). The goals of this modeling effort are to:

• Gather data to construct a computer simulation model of the Spokane River system including Long Lake Reservoir and the pools behind Nine Mile dam, Upper Falls dam and Upriver dam for 2001 based on the calibration conducted for 1991 and 2000 data sets, (Annear et al, 2001).

• Ensure that the model accurately represents the system hydrodynamics and water quality (flow, temperature, dissolved oxygen …


Basis Of The Ce-Qual-W2 Version 3 River Basin Hydrodynamic And Water Quality Model, Scott A. Wells Aug 2002

Basis Of The Ce-Qual-W2 Version 3 River Basin Hydrodynamic And Water Quality Model, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

CE-QUAL-W2 Version 3, a 2-D (longitudinal-vertical) hydrodynamic and water quality model for river basins combining both river and stratified river-estuary and lake-reservoir flow, is a development product of the Waterways Experiment Station in Vicksburg, MS, USA. With the development and release of any revised or reformulated model codes, significant model validation is required. This includes comparison of model results to simple analytical solutions for hydrodynamics and water quality transport, as well as comparison to laboratory and field data. In this paper, the model is compared to numerous analytical solutions for mass transport (1- D advective mass transport) and hydrodynamics (impulsive …


Willamette River And Columbia River Waste Load Allocation Model, Chris Berger, Robert Leslie Annear, Scott A. Wells Jul 2002

Willamette River And Columbia River Waste Load Allocation Model, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

A hydrodynamic and water quality model of the Lower Willamette River was developed to evaluate management alternatives designed to improve water quality. The Lower Willamette River is located in Oregon and drains a watershed covering 11500 square miles consisting of forested, agricultural, and urban lands. Inflows include treated municipal wastes and industrial effluents along with non-point sources from agricultural, silvicultural and urbanized land. The model was designed to address temperature, dissolved oxygen, algae, pH and bacteria concerns. The Corps of Engineers two-dimensional, laterally averaged, hydrodynamic and water quality model CE-QUAL-W2, Version 3 was applied. CE-QUAL-W2 consists of directly coupled hydrodynamic …


Upper Spokane River Model: Model Calibration, 1991 And 2000, Chris Berger, Robert Leslie Annear, Scott A. Wells Jan 2002

Upper Spokane River Model: Model Calibration, 1991 And 2000, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in a water quality model for the Upper Spokane River system for use in developing Total Maximum Daily Loads (TMDLs). The goals of this modeling effort are to:

• Gather data to construct a computer simulation model of the Spokane River system including Long Lake Reservoir and the pools behind Nine Mile dam, Upper Falls dam and Upriver dam. • Ensure that the model accurately represents the system hydrodynamics and water quality (flow, temperature, dissolved oxygen and nutrient dynamics)

This report evaluates the model calibration and discusses issues relative to that calibration effort. …


Validation Of The Ce-Qual-W2 Version 3 River Basin Hydrodynamic And Water Quality Model, Scott A. Wells Jan 2002

Validation Of The Ce-Qual-W2 Version 3 River Basin Hydrodynamic And Water Quality Model, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

CE-QUAL-W2 Version 3, a 2-D (longitudinal-vertical) hydrodynamic and water quality model for river basins combining both river and stratified river-estuary and lakereservoir flow, is a development product of the Waterways Experiment Station in Vicksburg, MS, USA. With the development and release of any revised or reformulated model codes, significant model validation is required. This includes comparison of model results to simple analytical solutions for hydrodynamics and water quality transport, as well as comparison to laboratory and field data. In this paper, the model is compared to numerous analytical solutions for mass transport (1-D advective mass transport) and hydrodynamics (impulsive wind …