Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Observations Of Greenhouse Gas Isotopologues With Ace-Fts And Waccm, Eric Michael Buzan Jul 2017

Observations Of Greenhouse Gas Isotopologues With Ace-Fts And Waccm, Eric Michael Buzan

Chemistry & Biochemistry Theses & Dissertations

Increases in greenhouse gas concentrations in the atmosphere are the major driver of climate change. Quantifying the sources and sinks of these gases is a major focus of research. Measuring isotopologues, or molecules that differ in isotopic composition, is one useful way of constraining the budget of a molecule as they are highly sensitive to different sources and sinks. However, measurements above the surface have been restricted to a few locations and have only reached the lower stratosphere. Satellite-based remote sensing can achieve nearly global measurement coverage, but so far no satellites have measured isotopologues.

Presented here are measurements of …


New And Improved Infra-Red Absorption Cross Sections And Ace-Fts Retrievals Of Carbon Tetrachloride (Ccl4), Jeremy J. Harrison, Christopher D. Boone, Peter F. Bernath Jan 2017

New And Improved Infra-Red Absorption Cross Sections And Ace-Fts Retrievals Of Carbon Tetrachloride (Ccl4), Jeremy J. Harrison, Christopher D. Boone, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

Carbon tetrachloride (CCl4) is one of the species regulated by the Montreal Protocol on account of its ability to deplete stratospheric ozone. As such, the inconsistency between observations of its abundance and estimated sources and sinks is an important problem requiring urgent attention (Carpenter et al., 2014) [5]. Satellite remote-sensing has a role to play, particularly limb sounders which can provide vertical profiles into the stratosphere and therefore validate stratospheric loss rates in atmospheric models. This work is in two parts. The first describes new and improved high-resolution infra-red absorption cross sections of carbon tetrachloride/dry synthetic air over …


Fit To Predict? Ecoinformatics For Predicting The Catchability Of A Pelagic Fish In Near Real-Time, Kylie L. Scales, Elliot L. Hazen, Sara M. Maxwell, Heidi Dewar, Suzanne Kohin, Michael G. Jacox, Christopher A. Edwards, Dana K. Briscoe, Larry B. Crowder, Rebecca L. Lewison, Steven J. Bograd Jan 2017

Fit To Predict? Ecoinformatics For Predicting The Catchability Of A Pelagic Fish In Near Real-Time, Kylie L. Scales, Elliot L. Hazen, Sara M. Maxwell, Heidi Dewar, Suzanne Kohin, Michael G. Jacox, Christopher A. Edwards, Dana K. Briscoe, Larry B. Crowder, Rebecca L. Lewison, Steven J. Bograd

Biological Sciences Faculty Publications

The ocean is a dynamic environment inhabited by a diverse array of highly migratory species, many of which are under direct exploitation in targeted fisheries. The timescales of variability in the marine realm coupled with the extreme mobility of ocean-wandering species such as tuna and billfish complicates fisheries management. Developing ecoinformatics solutions that allow for near real-time prediction of the distributions of highly mobile marine species is an important step towards the maturation of dynamic ocean management and ecological forecasting. Using 25 years (1990-2014) of NOAA fisheries' observer data from the California drift gillnet fishery, we model relative probability of …