Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Fully Differential Study Of Interference Effects In The Ionization Of H₂ By Proton Impact, Sachin D. Sharma, T. P. Arthanayaka, Ahmad Hasan, B. R. Lamichhane, J. Remolina, Adolph P. Smith, Michael Schulz Nov 2014

Fully Differential Study Of Interference Effects In The Ionization Of H₂ By Proton Impact, Sachin D. Sharma, T. P. Arthanayaka, Ahmad Hasan, B. R. Lamichhane, J. Remolina, Adolph P. Smith, Michael Schulz

Physics Faculty Research & Creative Works

We have measured fully differential cross sections for ionization of H2 by 75-keV proton impact. The coherence length of the projectile beam was varied by changing the distance between a collimating slit and the target. By comparing the cross sections measured for large and small coherence lengths pronounced interference effects could be identified in the data. A surprising result is that the phase angle in the interference term is primarily determined by the momentum transfer and only to a lesser extent by the recoil-ion momentum.


Projectile Coherence Effects In Electron Capture By Protons Colliding With H₂ And He, Sachin D. Sharma, Ahmad Hasan, Kisra N. Egodapitiya, T. P. Arthanayaka, G. Sakhelashvili, Michael Schulz Aug 2012

Projectile Coherence Effects In Electron Capture By Protons Colliding With H₂ And He, Sachin D. Sharma, Ahmad Hasan, Kisra N. Egodapitiya, T. P. Arthanayaka, G. Sakhelashvili, Michael Schulz

Physics Faculty Research & Creative Works

We have measured differential cross sections for single and dissociative capture for 25 and 75 keV protons colliding with H2 and He. Significant differences were found depending on whether the projectile beam was coherent or incoherent. For 75 keV p+H2 these differences can be mostly associated with molecular two-center interference and possibly some contributions from path interference. For 25 keV (both targets) they are mostly due to path interference between different impact parameters leading to the same scattering angles and, for the H2 target, possibly some contributions from molecular two-center interference.


Four Body Charge Transfer Process In Proton Helium Collision, Ujjal Chowdhury, Allison L. Harris, Jerry Peacher, Don H. Madison Jul 2012

Four Body Charge Transfer Process In Proton Helium Collision, Ujjal Chowdhury, Allison L. Harris, Jerry Peacher, Don H. Madison

Physics Faculty Research & Creative Works

Recent advancements in experimental techniques now allow for the study of fully differential cross sections for 4-body collisions. Theoretical fully differential cross sections will be presented and compared with absolute experimental data for transfer-excitation in proton-helium collisions. The role of different scattering mechanism will be discussed.


Differential Cross Sections For Single Ionization Of H₂ By 75kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison Jan 2012

Differential Cross Sections For Single Ionization Of H₂ By 75kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

We have calculated Triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H2 by 75 keV proton impact using the molecular 3 body distorted wave Eikonal initial state (M3DW-EIS) approach. Previously published measured DDCS-P (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles which were interpreted as an interference resulting from the two-centered potential of the molecule.


Hydrogen-Deuterium Isotope Shift: From The 1s-2s-Transition Frequency To The Proton-Deuteron Charge-Radius Difference, Ulrich D. Jentschura, Arthur N. Matveev, Christian G. Parthey, Janis Alnis, Randolf Pohl, Th H. Udem, Nikolai N. Kolachevsky, Theodor Wolfgang Hansch Apr 2011

Hydrogen-Deuterium Isotope Shift: From The 1s-2s-Transition Frequency To The Proton-Deuteron Charge-Radius Difference, Ulrich D. Jentschura, Arthur N. Matveev, Christian G. Parthey, Janis Alnis, Randolf Pohl, Th H. Udem, Nikolai N. Kolachevsky, Theodor Wolfgang Hansch

Physics Faculty Research & Creative Works

We analyze and review the theory of the hydrogen-deuterium isotope shift for the 1S-2S transition, which is one of the most accurately measured isotope shifts in any atomic system, in view of a recently improved experiment. A tabulation of all physical effects that contribute to the isotope shift is given. These include the Dirac binding energy, quantum electrodynamic effects, including recoil corrections, and the nuclear-size effect, including the pertaining relativistic and radiative corrections. From a comparison of the theoretical result Δfth=670999566.90(66)(60)kHz (exclusive of the nonrelativistic nuclear-finite-size correction) and the experimental result Δfexpt=670994334605(15) Hz, we infer the …


Differential Cross Sections For Single Ionization Of H₂ By 75-Kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison Mar 2011

Differential Cross Sections For Single Ionization Of H₂ By 75-Kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

We have calculated triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H2 by 75-keV proton impact using the molecular three-body distorted-wave-eikonal initial-state (M3DW-EIS) approach. Previously published measured DDCS (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles that were interpreted as an interference resulting from the two-centered potential of the molecule. Theory treating H2 as atomic H multiplied by a molecular interference factor only predicts the observed structure when assumptions are made about the molecular orientation. Here we apply the …


Scattering-Angle Dependence Of Doubly Differential Cross Sections For Fragmentation Of H₂ By Proton Impact, Kisra N. Egodapitiya, Sachin D. Sharma, Aaron C. Laforge, Michael Schulz Jan 2011

Scattering-Angle Dependence Of Doubly Differential Cross Sections For Fragmentation Of H₂ By Proton Impact, Kisra N. Egodapitiya, Sachin D. Sharma, Aaron C. Laforge, Michael Schulz

Physics Faculty Research & Creative Works

We have measured double differential cross sections (DDCS) for proton fragment formation for fixed projectile energy losses as a function of projectile scattering angle in 75 keV p + H2 collisions. An oscillating pattern was observed in the angular dependence of the DDCS with a frequency about twice as large as what we found earlier for nondissociative ionization. Possible origins for this frequency doubling are discussed.


Theoretical Fully Differential Cross Sections For Double-Charge-Transfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison Aug 2010

Theoretical Fully Differential Cross Sections For Double-Charge-Transfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison

Physics Faculty Research & Creative Works

We present a four-body model for double charge transfer, called the four-body double-capture model. This model explicitly treats all four particles in the collision, and we apply it here to fully differential cross sections (FDCSs) for proton+helium collisions. The effects of initial- and final-state electron correlations are studied, as well as the role of the projectile-nucleus interaction. We also present results for proton+helium single capture, as well as single-capture:double-capture ratios of FDCSs.


Three-Body Dynamics In Single Ionization Of Atomic Hydrogen By 75 Kev Proton Impact, Ahmad Hasan, Michael Schulz, Aaron C. Laforge, Jason S. Alexander, M. F. Ciappina, M. A. Khakoo, Kisra Nayomal Egodapitiya Jul 2009

Three-Body Dynamics In Single Ionization Of Atomic Hydrogen By 75 Kev Proton Impact, Ahmad Hasan, Michael Schulz, Aaron C. Laforge, Jason S. Alexander, M. F. Ciappina, M. A. Khakoo, Kisra Nayomal Egodapitiya

Physics Faculty Research & Creative Works

Doubly differential cross sections for single ionization of atomic hydrogen by 75 keV proton impact have been measured and calculated as a function of the projectile scattering angle and energy loss. This pure three-body collision system represents a fundamental test case for the study of the reaction dynamics in few-body systems. A comparison between theory and experiment reveals that three-body dynamics is important at all scattering angles and that an accurate description of the role of the projectile-target-nucleus interaction remains a major challenge to theory.


Ammonia Elimination From Protonated Nucleobases And Related Synthetic Substrates, Ming Qian, Shuo Yang, Hong Wu, Papiya S. Majumdar, Nathan D. Leigh, Rainer Glaser Nov 2007

Ammonia Elimination From Protonated Nucleobases And Related Synthetic Substrates, Ming Qian, Shuo Yang, Hong Wu, Papiya S. Majumdar, Nathan D. Leigh, Rainer Glaser

Chemistry Faculty Research & Creative Works

The results are reported of mass-spectrometric studies of the nucleobases adenine 1h (1, R = H), guanine 2h, and cytosine 3h. The protonated nucleobases are generated by electrospray ionization of adenosine 1r (1, R = ribose), guanosine 2r, and deoxycytidine 3d (3, R = deoxyribose) and their fragmentations were studied with tandem mass spectrometry. In contrast to previous EI-MS studies of the nucleobases, NH3 elimination does present a major path for the fragmentations of the ions [1h + H]+, [2h + H]+, and …


Positronium Formation In Positron-Li And Positron-Na Collisions At Low Energies, Anh-Thu Le, M. W. J. Bromley, C. D. Lin Mar 2005

Positronium Formation In Positron-Li And Positron-Na Collisions At Low Energies, Anh-Thu Le, M. W. J. Bromley, C. D. Lin

Physics Faculty Research & Creative Works

We present the positronium formation cross sections for a positron colliding with lithium and sodium for the collision energies from 0.01 eV up to 20 eV by the hyperspherical close-coupling method. For Li, our results agree with the experimental data and with other calculations. Our results for Na remain in agreement with previous close-coupling calculations, but do not support the latest experimental data for Na below 1 eV. To validate our model potentials and method in the low-energy regime, the binding energies of positronic lithium and positronic sodium as well as the s-wave scattering lengths for positronium scattering from Li⁺ …


Breakup Of H₂ In Singly Ionizing Collisions With Fast Protons: Channel-Selective Low-Energy Electron Spectra, Christina Dimopoulou, Robert Moshammer, Daniel Fischer, C. Hohr, Alexander Dorn, Pablo Daniel Fainstein, Jose R. Crespo Lopez-Urrutia, Claus Dieter Schroter, Holger Kollmus, Rido Mann, Siegbert Hagmann, Joachim Hermann Ullrich Sep 2004

Breakup Of H₂ In Singly Ionizing Collisions With Fast Protons: Channel-Selective Low-Energy Electron Spectra, Christina Dimopoulou, Robert Moshammer, Daniel Fischer, C. Hohr, Alexander Dorn, Pablo Daniel Fainstein, Jose R. Crespo Lopez-Urrutia, Claus Dieter Schroter, Holger Kollmus, Rido Mann, Siegbert Hagmann, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

The dissociation of H2 in singly ionizing collisions with fast protons was analyzed using channel-selective low-energy electron spectra. Dissociative and nondissociative single ionization of H2 by 6MeV proton impact was described in a kinematically by determining momentum vectors of electron and H+ fragment of H2+ target ion, respectively. The electron spectra exhibited role of autoionization of doubly and singly excited states of H2. The doubly and singly excited states of H2 involve coupling between electronic and nuclear motion of molecule.


Projectile-Charge Sign Dependence Of Four-Particle Dynamics In Helium Double Ionization, Daniel Fischer, Robert Moshammer, Alexander Dorn, Jose R. Crespo Lopez-Urrutia, Bernold Feuerstein, C. Hohr, Claus Dieter Schroter, Siegbert Hagmann, Holger Kollmus, Rido Mann, Bhas Bapat, Joachim Hermann Ullrich, Holger Kollmus Jun 2003

Projectile-Charge Sign Dependence Of Four-Particle Dynamics In Helium Double Ionization, Daniel Fischer, Robert Moshammer, Alexander Dorn, Jose R. Crespo Lopez-Urrutia, Bernold Feuerstein, C. Hohr, Claus Dieter Schroter, Siegbert Hagmann, Holger Kollmus, Rido Mann, Bhas Bapat, Joachim Hermann Ullrich, Holger Kollmus

Physics Faculty Research & Creative Works

Double ionization of helium by 6 MeV proton impact has been explored in a kinematically complete experiment using a “reaction microscope.” For the first time, fully differential cross sections for positively charged projectiles have been obtained and compared with data from 2 keV electron impact. The significant differences observed in the angular distribution of the ejected electrons are attributed to the charge sign of the projectile, resulting in different dynamics of the four-particle Coulomb system, which is not considered in the first Born approximation.


A New Layered Iron Fluorophosphates, Amitava Choudhury Apr 2002

A New Layered Iron Fluorophosphates, Amitava Choudhury

Chemistry Faculty Research & Creative Works

A new iron fluorophosphate of the composition, [C6N4H21] [Fe2F2(HPO4)3][H2PO4]·2H2O, I. has been prepared by the hydrothermal route. This compound contains iron fluorophosphate layers and the H2PO4- anions are present in the interlayer space along with the protonated amine and water molecules. The compound crystallizes in the monoclinic space group P21/c. (a = 13.4422(10) Å, b = 9.7320(10) Å, c = 18.3123(3) Å, ? = 92.1480°, V = 2393.92(5) Å3, Z = 4, …


Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich Apr 2002

Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Low-energy electron emission spectra are studied in collisions of 3.6 MeV/amu Au53+ ions with neon and argon atoms for well-defined degrees of target ionization. We calculate doubly differential cross sections as functions of the recoil-ion charge state in the continuum-distorted-wave with eikonal initial-state approximation using a binomial analysis of the total and differential ionization probabilities, and compare them with the present and with previously published experimental data. Very good agreement is found for the single-ionization spectra and for double ionization of neon, while some discrepancies are observed in the spectra for double and triple ionization of argon.