Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Low Energy Electron And Positron Impact Differential Cross Sections For The Ionization Of Water Molecules In The Coplanar And Perpendicular Kinematics, P. Singh, G. Purohit, C. Champion, D. Sebilleau, Don H. Madison Feb 2019

Low Energy Electron And Positron Impact Differential Cross Sections For The Ionization Of Water Molecules In The Coplanar And Perpendicular Kinematics, P. Singh, G. Purohit, C. Champion, D. Sebilleau, Don H. Madison

Physics Faculty Research & Creative Works

We report here triply differential cross sections (TDCSs) for 81 eV electron and positron-impact ionization of the combined (1b1 + 3a1 ) orbitals of the water molecule by using the second-order distorted wave Born approximation (DWBA2) for ejection electron and positron energies of 5 eV and 10 eV and different momentum transfer conditions. The electron-impact TDCS will be compared with the experimental data measured by Ren et al. [Phys. Rev. A 95, 022701 (2017)] and with the molecular 3-body distorted wave (M3DW) approximation results in the scattering plane as well as the perpendicular plane. The DWBA2 results are …


State-To-State Reaction Dynamics Of ¹⁸O+³²O₂ Studied By A Time-Dependent Quantum Wavepacket Method, Wenbo Xie, Lan Liu, Zhigang Sun, Hua Guo, Richard Dawes Feb 2015

State-To-State Reaction Dynamics Of ¹⁸O+³²O₂ Studied By A Time-Dependent Quantum Wavepacket Method, Wenbo Xie, Lan Liu, Zhigang Sun, Hua Guo, Richard Dawes

Chemistry Faculty Research & Creative Works

The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with 32O2 in the hypothetical j0 = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period …


Projectile Coherence Effects In Electron Capture By Protons Colliding With H₂ And He, Sachin D. Sharma, Ahmad Hasan, Kisra N. Egodapitiya, T. P. Arthanayaka, G. Sakhelashvili, Michael Schulz Aug 2012

Projectile Coherence Effects In Electron Capture By Protons Colliding With H₂ And He, Sachin D. Sharma, Ahmad Hasan, Kisra N. Egodapitiya, T. P. Arthanayaka, G. Sakhelashvili, Michael Schulz

Physics Faculty Research & Creative Works

We have measured differential cross sections for single and dissociative capture for 25 and 75 keV protons colliding with H2 and He. Significant differences were found depending on whether the projectile beam was coherent or incoherent. For 75 keV p+H2 these differences can be mostly associated with molecular two-center interference and possibly some contributions from path interference. For 25 keV (both targets) they are mostly due to path interference between different impact parameters leading to the same scattering angles and, for the H2 target, possibly some contributions from molecular two-center interference.


Comparison Of Experiment And Theory For Electron Impact Ionization Of Isoelectronic Atoms And Molecules, Hari Chaluvadi, Kate L. Nixon, Sadek M. Amami, Andrew James Murray, Don H. Madison Jan 2012

Comparison Of Experiment And Theory For Electron Impact Ionization Of Isoelectronic Atoms And Molecules, Hari Chaluvadi, Kate L. Nixon, Sadek M. Amami, Andrew James Murray, Don H. Madison

Physics Faculty Research & Creative Works

Experimental and Theoretical Triply Differential Cross sections will be presented for low energy electron impact ionization of Ne, CH4, and NH3. The collision mechanisms responsible for the various structures found in the cross sections will be discussed.


Experimental And Theoretical Investigation Of The Triple Differential Cross Section For Electron Impact Ionization Of Pyrimidine Molecules, J. D. Builth-Williams, Susan M. Bellm, Darryl B. Jones, Hari Chaluvadi, Don H. Madison, Chuangang Ning, B. Lohmann, Michael J. Brunger Jan 2012

Experimental And Theoretical Investigation Of The Triple Differential Cross Section For Electron Impact Ionization Of Pyrimidine Molecules, J. D. Builth-Williams, Susan M. Bellm, Darryl B. Jones, Hari Chaluvadi, Don H. Madison, Chuangang Ning, B. Lohmann, Michael J. Brunger

Physics Faculty Research & Creative Works

Cross-section data for electron impact induced ionization of bio-molecules are important for modelling the deposition of energy within a biological medium and for gaining knowledge of electron driven processes at the molecular level. Triply differential cross sections have been measured for the electron impact ionization of the outer valence 7b 2 and 10a 1 orbitals of pyrimidine, using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and ejected electron energy of 20 eV, for scattered electron angles of -5°, -10°, and -15°. The ejected electron angular range …


Differential Cross Sections For Single Ionization Of H₂ By 75kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison Jan 2012

Differential Cross Sections For Single Ionization Of H₂ By 75kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

We have calculated Triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H2 by 75 keV proton impact using the molecular 3 body distorted wave Eikonal initial state (M3DW-EIS) approach. Previously published measured DDCS-P (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles which were interpreted as an interference resulting from the two-centered potential of the molecule.


Low Energy (E,2e) Studies From Ch₄: Results From Symmetric Coplanar Experiments And Molecular Three-Body Distorted Wave Theory, Kate L. Nixon, Andrew James Murray, Hari Chaluvadi, Chuangang Ning, Don H. Madison May 2011

Low Energy (E,2e) Studies From Ch₄: Results From Symmetric Coplanar Experiments And Molecular Three-Body Distorted Wave Theory, Kate L. Nixon, Andrew James Murray, Hari Chaluvadi, Chuangang Ning, Don H. Madison

Physics Faculty Research & Creative Works

Low energy experimental and theoretical triply differential cross sections are presented for electron impact ionization of methane (CH4) for both the highest occupied molecular orbital (HOMO) and next highest occupied molecular orbital (NHOMO). The HOMO is a predominantly p-type orbital which is labeled 1t2 and the NHOMO is predominantly s-type labeled 2a 1. Coplanar symmetric (symmetric both in final state electron energies and observation angles) are presented for final state electron energies ranging from 2.5 to 20 eV. The theoretical M3DW (molecular three-body distorted wave) results are in surprisingly good agreement with experiment for the HOMO …


Differential Cross Sections For Single Ionization Of H₂ By 75-Kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison Mar 2011

Differential Cross Sections For Single Ionization Of H₂ By 75-Kev Proton Impact, Ujjal Chowdhury, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

We have calculated triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H2 by 75-keV proton impact using the molecular three-body distorted-wave-eikonal initial-state (M3DW-EIS) approach. Previously published measured DDCS (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles that were interpreted as an interference resulting from the two-centered potential of the molecule. Theory treating H2 as atomic H multiplied by a molecular interference factor only predicts the observed structure when assumptions are made about the molecular orientation. Here we apply the …


Tracing Multiple Scattering Patterns In Absolute (E, 2e) Cross Sections For H₂ And He Over A 4Π Solid Angle, Xueguang Ren, Arne Senftleben, Thomas Pflüger, Alexander Dorn, James Colgan, Michael S. Pindzola, Ola A. Al-Hagan, Don H. Madison, Igor Bray, Dmitry V. Fursa, Joachim Hermann Ullrich Sep 2010

Tracing Multiple Scattering Patterns In Absolute (E, 2e) Cross Sections For H₂ And He Over A 4Π Solid Angle, Xueguang Ren, Arne Senftleben, Thomas Pflüger, Alexander Dorn, James Colgan, Michael S. Pindzola, Ola A. Al-Hagan, Don H. Madison, Igor Bray, Dmitry V. Fursa, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Absolutely normalized (e,2e) measurements for H2 and He covering the full solid angle of one ejected electron are presented for 16 eV sum energy of both final state continuum electrons. For both targets rich cross-section structures in addition to the binary and recoil lobes are identified and studied as a function of the fixed electron's emission angle and the energy sharing among both electrons. For H2 their behavior is consistent with multiple scattering of the projectile as discussed before. For He the binary and recoil lobes are significantly larger than for H2 and partly cover the multiple …


Fivefold Differential Cross Sections For Ground-State Ionization Of Aligned H₂ By Electron Impact, Arne Senftleben, Ola A. Al-Hagan, Thomas Pfluger, Xueguang Ren, Don H. Madison, Alexander Dorn, Joachim Hermann Ullrich Jul 2010

Fivefold Differential Cross Sections For Ground-State Ionization Of Aligned H₂ By Electron Impact, Arne Senftleben, Ola A. Al-Hagan, Thomas Pfluger, Xueguang Ren, Don H. Madison, Alexander Dorn, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

We discuss the ionization of aligned hydrogen molecules into their ionic ground state by 200 eV electrons. Using a reaction microscope, the complete electron scattering kinematics is imaged over a large solid angle. Simultaneously, the molecular alignment is derived from postcollision dissociation of the residual ion. It is found that the ionization cross section is maximized for small angles between the internuclear axis and the momentum transfer. Fivefold differential cross sections (5DCSs) reveal subtle differences in the scattering process for the distinct alignments. We compare our observations with theoretical 5DCSs obtained with an adapted molecular three-body distorted wave model that …


Differential Cross Sections For Non-Sequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter Jul 2010

Differential Cross Sections For Non-Sequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter

Physics Faculty Research & Creative Works

Two-photon double ionization of He is studied at the Free Electron Laser in Hamburg (FLASH) by inspecting He2+ momentum (P-(He 2+)) distributions at 52 eV photon energy. We demonstrate that recoil ion momentum distributions can be used to infer information about highly correlated electron dynamics and find the first experimental evidence for 'virtual sequential ionization'. The experimental data are compared with the results of two calculations, both solving the time-dependent Schrodinger equation. We find good overall agreement between experiment and theory, with significant differences for cuts along the polarization direction that cannot be explained by the experimental resolution …


(E,2e) Study Of Two-Center Interference Effects In The Ionization Of N₂, Leigh R. Hargreaves, Christopher J. Colyer, Mark A. Stevenson, B. Lohmann, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning Dec 2009

(E,2e) Study Of Two-Center Interference Effects In The Ionization Of N₂, Leigh R. Hargreaves, Christopher J. Colyer, Mark A. Stevenson, B. Lohmann, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning

Physics Faculty Research & Creative Works

A number of previous studies have suggested the possibility of two-center interference effects in the single ionization of diatomic molecules such as H2 and N2. While interference effects have been successfully observed in the ionization of H2, to date evidence for interference in N2 ionization has yet to be conclusively demonstrated. This study presents triply differential cross sections for electron impact ionization of N2, measured using the (e,2e) technique. The data are probed for signatures of two-center interference effects. Evidence for interference manifesting in the cross sections is observed.