Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

On Using The Color-Magnitude Diagram Morphology Of M67 To Test Solar Abundances, Z. Magic, A. Serenelli, A. Weiss, B. Chaboyer Aug 2010

On Using The Color-Magnitude Diagram Morphology Of M67 To Test Solar Abundances, Z. Magic, A. Serenelli, A. Weiss, B. Chaboyer

Dartmouth Scholarship

The open cluster M67 has solar metallicity and an age of about 4 Gyr. The turnoff (TO) mass is close to the minimum mass for which solar metallicity stars develop a convective core during main sequence evolution as a result of the development of hydrogen burning through the CNO cycle. The morphology of the color-magnitude diagram (CMD) of M67 around the TO shows a clear hook-like feature, a direct sign that stars close to the TO have convective cores. VandenBerg et al. investigated the possibility of using the morphology of the M67 TO to put constraints on the solar metallicity, …


Sn 2010u: A Luminous Nova In Ngc 4214, Roberta M. Humphreys, José L. Prieto, Philip Rosenfield, L. Andrew Helton, Christopher S. Kochanek, K. Z. Stanek, Rubab Khan, Dorota Szczygiel, Karen Mogren, Robert A. Fesen Jul 2010

Sn 2010u: A Luminous Nova In Ngc 4214, Roberta M. Humphreys, José L. Prieto, Philip Rosenfield, L. Andrew Helton, Christopher S. Kochanek, K. Z. Stanek, Rubab Khan, Dorota Szczygiel, Karen Mogren, Robert A. Fesen

Dartmouth Scholarship

The luminosity, light curve, post-maximum spectrum, and lack of a progenitor on deep pre-outburst images suggest that SN 2010U was a luminous, fast nova. Its outburst magnitude is consistent with that for a fast nova using the maximum magnitude-rate of decline relationship for classical novae.


Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson Jun 2010

Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson

Dartmouth Scholarship

X-ray observations of clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as "cold fronts." In relaxed clusters with cool cores, these commonly observed edges have been interpreted as evidence for the "sloshing" of the core gas in the cluster's gravitational potential. Such sloshing may provide a source of heat to the cluster core by mixing hot gas from the cluster outskirts with the cool-core gas. Using high-resolution N-body/Eulerian hydrodynamic simulations, we model gas sloshing in galaxy clusters initiated by mergers with subclusters. The simulations include merger scenarios with gas-filled and gasless subclusters. The …


Non-Gaussianity From Self-Ordering Scalar Fields, Daniel G. Figueroa, Robert R. Caldwell, Marc Kamionkowski Jun 2010

Non-Gaussianity From Self-Ordering Scalar Fields, Daniel G. Figueroa, Robert R. Caldwell, Marc Kamionkowski

Dartmouth Scholarship

The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide …


Core Gas Sloshing In Abell 1644, Ryan E. Johnson, Maxim Markevitch, Gary A. Wegner, Christine Jones, William R. Forman Feb 2010

Core Gas Sloshing In Abell 1644, Ryan E. Johnson, Maxim Markevitch, Gary A. Wegner, Christine Jones, William R. Forman

Dartmouth Scholarship

We present an analysis of a 72 ks Chandra observation of the double cluster Abell 1644 (z = 0.047). The X-ray temperatures indicate that the masses are M 500 = (2.6 ± 0.4) × 1014 h –1 M for the northern sub-cluster and M 500 = (3.1 ± 0.4) × 1014 h –1 M for the southern, main cluster. We identify a sharp edge in the radial X-ray surface brightness of the main cluster, which we find to be a cold front, with a jump in temperature of a factor of ~3. This edge possesses …