Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Dartmouth College

2009

Computerized simulation

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz Jun 2009

Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz

Dartmouth Scholarship

Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D) turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid relaxation in a turbulent regime is governed by principles of maximum entropy.


Class Of Nonperturbative Configurations In Abelian-Higgs Models: Complexity From Dynamical Symmetry Breaking, M. Gleiser, J. Thorarinson Jan 2009

Class Of Nonperturbative Configurations In Abelian-Higgs Models: Complexity From Dynamical Symmetry Breaking, M. Gleiser, J. Thorarinson

Dartmouth Scholarship

We present a numerical investigation of the dynamics of symmetry breaking in both Abelian and non-Abelian [SU(2)] Higgs models in three spatial dimensions. We find a class of time-dependent, long-lived nonperturbative field configurations within the range of parameters corresponding to type-1 superconductors, that is, with vector masses (mv) larger than scalar masses (ms). We argue that these emergent nontopological configurations are related to oscillons found previously in other contexts. For the Abelian-Higgs model, our lattice implementation allows us to map the range of parameter space—the values of β=(ms/mv)2—where such configurations exist and to follow them for times t∼O(105)m−1. An investigation …