Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Energy-Aware Path Planning For Fixed-Wing Seaplane Uavs, Benjamin Atkinson Wolsieffer Sep 2023

Energy-Aware Path Planning For Fixed-Wing Seaplane Uavs, Benjamin Atkinson Wolsieffer

Dartmouth College Master’s Theses

Fixed-wing unmanned aerial vehicles (UAVs) are commonly used for remote sensing applications over water bodies, such as monitoring water quality or tracking harmful algal blooms. However, there are some types of measurements that are difficult to accurately obtain from the air. In existing work, water samples have been collected in situ either by hand, with an unmanned surface vehicle (USV), or with a vertical takeoff and landing (VTOL) UAV such as a multirotor. We propose a path planner, landing control algorithm, and energy estimator that will allow a low-cost and energy efficient fixed-wing UAV to carry out a combined remote …


Data-Optimized Spatial Field Predictions For Robotic Adaptive Sampling: A Gaussian Process Approach, Zachary Nathan May 2023

Data-Optimized Spatial Field Predictions For Robotic Adaptive Sampling: A Gaussian Process Approach, Zachary Nathan

Computer Science Senior Theses

We introduce a framework that combines Gaussian Process models, robotic sensor measurements, and sampling data to predict spatial fields. In this context, a spatial field refers to the distribution of a variable throughout a specific area, such as temperature or pH variations over the surface of a lake. Whereas existing methods tend to analyze only the particular field(s) of interest, our approach optimizes predictions through the effective use of all available data. We validated our framework on several datasets, showing that errors can decline by up to two-thirds through the inclusion of additional colocated measurements. In support of adaptive sampling, …


Object Manipulation With Modular Planar Tensegrity Robots, Maxine Perroni-Scharf Jun 2021

Object Manipulation With Modular Planar Tensegrity Robots, Maxine Perroni-Scharf

Dartmouth College Undergraduate Theses

This thesis explores the creation of a novel two-dimensional tensegrity-based mod- ular system. When individual planar modules are linked together, they form a larger tensegrity robot that can be used to achieve non-prehensile manipulation. The first half of this dissertation focuses on the study of preexisting types of tensegrity mod- ules and proposes different possible structures and arrangements of modules. The second half describes the construction and actuation of a modular 2D robot com- posed of planar three-bar tensegrity structures. We conclude that tensegrity modules are suitably adapted to object manipulation and propose a future extension of the modular 2D …