Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Clemson University

2023

Discipline
Keyword
Publication
Publication Type

Articles 1 - 30 of 98

Full-Text Articles in Physical Sciences and Mathematics

Leveraging Artificial Intelligence For Team Cognition In Human-Ai Teams, Beau Schelble Dec 2023

Leveraging Artificial Intelligence For Team Cognition In Human-Ai Teams, Beau Schelble

All Dissertations

Advances in artificial intelligence (AI) technologies have enabled AI to be applied across a wide variety of new fields like cryptography, art, and data analysis. Several of these fields are social in nature, including decision-making and teaming, which introduces a new set of challenges for AI research. While each of these fields has its unique challenges, the area of human-AI teaming is beset with many that center around the expectations and abilities of AI teammates. One such challenge is understanding team cognition in these human-AI teams and AI teammates' ability to contribute towards, support, and encourage it. Team cognition is …


Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart Dec 2023

Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart

All Dissertations

Novel modern materials are constantly being discovered as humanity seeks constantly better improvement to the optics and electronics around us, from lasers used in medical therapies to the magnets and supercomputing chips in our phones. Inorganic oxides commonly draw inspiration from naturally occurring minerals to template new discoveries through substitution of similarly behaving elements with the goal of inducing certain desired properties, such as ferroelectricity or creating the elusive quantum spin liquid. While many minerals are silicates, its periodic table neighbor germanium(IV) has a rich and under-explored crystal chemistry that could contain many new structures and magnetic materials. Another common …


Studies On Electrochemical Hydrogen Isotope Separation, Liyanage Mayura Sankalpa Silva Dec 2023

Studies On Electrochemical Hydrogen Isotope Separation, Liyanage Mayura Sankalpa Silva

All Dissertations

Graphene-integrated Proton Exchange Membrane (PEM) electrochemical cells have emerged as a novel area of scientific investigation in the realm of hydrogen isotope separation. Chemical Vapor Deposited (CVD) graphene has been especially useful due to its large-scale production capability for scaling-up purposes. The research described in this dissertation explores the role that inadvertent introduction of cations, notably ammonium and copper, during the CVD graphene transfer onto PEM substrates, such as Nafion, might play in affecting hydrogen ion transport and isotope separation in PEM electrochemical cells. An extensive review of existing literature exposed a gap concerning unintentional cation introductions during graphene transfer, …


An Investigation Of The Accretion Processes In T Tauri And Herbig Ae/Be Systems Using High Resolution Optical And Near-Infrared Spectroscopy, Joshua Kern Dec 2023

An Investigation Of The Accretion Processes In T Tauri And Herbig Ae/Be Systems Using High Resolution Optical And Near-Infrared Spectroscopy, Joshua Kern

All Dissertations

Star and planet formation is intimately tied to the accretion of material from the environments in which they form. During the formation process, disks of gas and dust develop in young stellar objects through which material is facilitated to the star and forming planets. Theoretical models of these accretion processes invoke viscous spreading via hydrodynamics, as well as more complex interactions with magnetic fields be it from the stellar component or the formation environment in order to catalyze these mass flows. These accretion models predict various scenarios including magnetospheric accretion as well as supersonic accretion flows in the disk atmosphere …


Understanding The Interaction Of Environmental Contaminants With Polystyrene Nanoparticles And Dna Using Nuclear Magnetic Resonance Spectroscopy And Density Functional Theory, Saduni Arachchi Dec 2023

Understanding The Interaction Of Environmental Contaminants With Polystyrene Nanoparticles And Dna Using Nuclear Magnetic Resonance Spectroscopy And Density Functional Theory, Saduni Arachchi

All Dissertations

The objective of the thesis is to study the effect of environmental pollutants on polystyrene nanoparticles and biomolecules. This is done in two different techniques, particularly NMR and density functional theory. In this thesis, we use a combination of 1H NMR, Saturation-Transfer Difference (STD) NMR and relaxation experiments to study the interactions, kinetics and dynamics of antibiotics with polystyrene nanoparticles. (PS NPs) Density functional theory (DFT) is used to study the binding of commonly used non-oxidative hair dyes to biomolecules (DNA and amino acids) and PS particles.


Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


Thermal Energy Storage Using High Temperature Borehole Heat Exchangers In Unconsolidated Materials, Kayla Bicknell Dec 2023

Thermal Energy Storage Using High Temperature Borehole Heat Exchangers In Unconsolidated Materials, Kayla Bicknell

All Theses

Thermal energy storage is a potential method for storing excess energy produced when supply is greater than demand. The use of the subsurface for storing thermal energy has become more recognized as a viable alternative to conventional methods of energy storage. However, high temperature borehole thermal energy storage has yet to be researched in-depth. Therefore, the goal of this project is to determine the feasibility of using the subsurface to store thermal energy at relatively high temperatures.

The focus of this work is to determine what design elements would make a borehole thermal energy storage system most effective and produce …


Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio Dec 2023

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Hussein Dec 2023

Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Hussein

All Dissertations

Interfaces are ubiquitous in materials systems, and they influence the processing and properties of nearly all engineering and functional materials. Examples include grain boundaries (GBs) in polycrystalline materials, free surfaces in nanoparticles, and phase boundaries in multiphase materials. Therefore, understanding and controlling interfacial processes is a key aspect of materials design and discovery efforts.

Recent developments in advanced manufacturing and synthesis techniques have enabled the fabrication of materials architectures with intricate nanoscale features. Of particular interest is solid-state sintering, known for creating complex and high-precision geometries with controlled microstructures. While sintering science has been the subject of active research, very …


Zero-Knowledge Reductions And Confidential Arithmetic, Marvin Jones Dec 2023

Zero-Knowledge Reductions And Confidential Arithmetic, Marvin Jones

All Dissertations

The changes in computing paradigms to shift computations to third parties have resulted in the necessity of these computations to be provable. Zero-knowledge arguments are probabilistic arguments that are used to to verify computations without secret data being leaked to the verifying party.

In this dissertation, we study zero-knowledge arguments with specific focus on reductions. Our main contributions are:

  1. Provide a thorough survey in a variety of zero-knowledge techniques and protocols.
  2. Prove various results of reductions that can be used to study interactive protocols in terms of subroutines. Additionally, we identify an issue in the analogous definition of zero-knowledge for …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang Dec 2023

Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang

All Dissertations

This dissertation presents an HPC-enabled fast and configurable dynamic simulation, analysis, and learning framework for complex power system adaptation and control. Dynamic simulation for a large transmission system comprising thousands of buses and branches implies the latency of complicated numerical computations. However, faster-than-real-time execution is often required to provide timely support for power system planning and operation. The traditional approaches for speeding up the simulation demand extensive computing facilities such as CPU-based multi-core supercomputers, resulting in heavily resource-dependent solutions. In this work, by coupling the Message Passing Interface (MPI) protocol with an advanced heterogeneous programming environment, further acceleration can be …


New Preconditioned Conjugate Gradient Methods For Some Structured Problems In Physics, Tianqi Zhang Dec 2023

New Preconditioned Conjugate Gradient Methods For Some Structured Problems In Physics, Tianqi Zhang

All Dissertations

This dissertation concerns the development and analysis of new preconditioned conjugate gradient (PCG) algorithms for three important classes of large-scale and complex physical problems characterized by special structures. We propose several new iterative methods for solving the eigenvalue problem or energy minimization problem, which leverage the unique structures inherent in these problems while preserving the underlying physical properties. The new algorithms enable more efficient and robust large-scale modeling and simulations in many areas, including condensed matter physics, optical properties of materials, stabilities of dynamical systems arising from control problems, and many more. Some methods are expected to be applicable to …


Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Marwan Isa Hussein Dec 2023

Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Marwan Isa Hussein

All Dissertations

Interfaces are ubiquitous in materials systems, and they influence the processing and properties of nearly all engineering and functional materials. Examples include grain boundaries (GBs) in polycrystalline materials, free surfaces in nanoparticles, and phase boundaries in multiphase materials. Therefore, understanding and controlling interfacial processes is a key aspect of materials design and discovery efforts. Recent developments in advanced manufacturing and synthesis techniques have enabled the fabrication of materials architectures with intricate nanoscale features. Of particular interest is solid-state sintering, known for creating complex and high-precision geometries with controlled microstructures. While sintering science has been the subject of active research, very …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Generalized Vulnerability Measures Of Graphs, Julia Vanlandingham Dec 2023

Generalized Vulnerability Measures Of Graphs, Julia Vanlandingham

All Theses

Several measures of vulnerability of a graph look at how easy it is to disrupt the network by removing/disabling vertices. As graph-theoretical parameters, they treat all vertices alike: each vertex is equally important. For example, the integrity parameter considers the number of vertices removed and the maximum number of vertices in a component that remains. We consider the generalization of these measures of vulnerability to weighted vertices in order to better model real-world applications. In particular, we investigate bounds on the weighted versions of connectivity and integrity, when polynomial algorithms for computation exist, and other characteristics of the generalized measures.


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan Aug 2023

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


High-Energy Storm Events And Their Impacts On Carbon Storage In Tidal Wetlands Of South Carolina, Gavin Gleasman Aug 2023

High-Energy Storm Events And Their Impacts On Carbon Storage In Tidal Wetlands Of South Carolina, Gavin Gleasman

All Dissertations

Atmospheric carbon dioxide (CO2) concentrations have been increasing at an accelerating rate for the past two centuries, profoundly impacting global climate change. Atmospheric CO2 concentrations are influenced by the global carbon cycle through physical and biogeochemical pathways. Tidal wetland environments play a vital role in the global carbon cycle by offsetting atmospheric CO2 concentrations through their natural physiochemical processes of high autotrophic productivity, allochthonous organic matter deposition, anoxic soils, and continuous accretion which promotes carbon sequestration with long-term storage at the land-ocean margin. The Intergovernmental Panel on Climate Change (IPCC) and United States Global Change Research …


Zeros Of Modular Forms, Daozhou Zhu Aug 2023

Zeros Of Modular Forms, Daozhou Zhu

All Dissertations

Let $E_k(z)$ be the normalized Eisenstein series of weight $k$ for the full modular group $\text{SL}(2, \mathbb{Z})$. It is conjectured that all the zeros of the weight $k+\ell$ cusp form $E_k(z)E_\ell(z)-E_{k+\ell}(z)$ in the standard fundamental domain lie on the boundary. Reitzes, Vulakh and Young \cite{Reitzes17} proved that this statement is true for sufficiently large $k$ and $\ell$. Xue and Zhu \cite{Xue} proved the cases when $\ell=4,6,8$ with $k\geq\ell$, all the zeros of $E_k(z)E_\ell(z)-E_{k+\ell}(z)$ lie on the arc $|z|=1$. For all $k\geq\ell\geq10$, we will use the same method as \cite{Reitzes17} to locate these zeros on the arc $|z|=1$, and improve the …


Expansion Of The Diazacyclobutene Motif For Antiparasitic Evaluation, Brock Alexander Miller Aug 2023

Expansion Of The Diazacyclobutene Motif For Antiparasitic Evaluation, Brock Alexander Miller

All Dissertations

Molecules containing N-heterocycles are prevalent in pharmaceutical settings. The ability to generate highly functionalized molecules containing N-heterocycles in very few synthetic operations is valuable for drug discovery. Our group has developed a two-step synthesis to access a rarely studied diazacyclobutene scaffold via a formal [2+2] cycloaddition between 4-phenyl-1,2,4-triazolinedione and electron-rich thioalkynes. Our interest in this scaffold increased exponentially from promising preliminary biological evaluations against a protozoan parasite, Trypanosoma brucei. While we were able to double the number of historical examples of this scaffold, there were significant limitations in our methodology. The most notable limitations were the lack …


Atom Economical Reactions Of Terpenoids And Post-Consumer Plastics With Sulfur, Charini Maladeniya Aug 2023

Atom Economical Reactions Of Terpenoids And Post-Consumer Plastics With Sulfur, Charini Maladeniya

All Dissertations

The production of Ordinary Portland Cement (OPC) and its uses have a complicated environmental impact, which is influenced by infrastructure development and building operations as well as CO2 emissions, which account for 7% of all worldwide CO2 emissions. Due to the increasing population, production is still ongoing. The search for cement and construction materials produced with zero to low CO2 emissions is therefore continuous. Finding recyclable, CO2 gas-free biocomposites with high sulfur content that can rival the mechanical properties of popular building supplies like Portland cement is the primary objective of the research discussed in this …


Motion Synthesis And Control For Autonomous Agents Using Generative Models And Reinforcement Learning, Pei Xu Aug 2023

Motion Synthesis And Control For Autonomous Agents Using Generative Models And Reinforcement Learning, Pei Xu

All Dissertations

Imitating and predicting human motions have wide applications in both graphics and robotics, from developing realistic models of human movement and behavior in immersive virtual worlds and games to improving autonomous navigation for service agents deployed in the real world. Traditional approaches for motion imitation and prediction typically rely on pre-defined rules to model agent behaviors or use reinforcement learning with manually designed reward functions. Despite impressive results, such approaches cannot effectively capture the diversity of motor behaviors and the decision making capabilities of human beings. Furthermore, manually designing a model or reward function to explicitly describe human motion characteristics …


Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish Aug 2023

Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish

All Dissertations

Highly charged ions (HCIs) exist in many hot astrophysical environments where they play an important role in plasma dynamics. Charge exchange involving highly charged ions has been shown to be responsible for many observed X-ray emissions from a variety of astrophysical sources. Proper modeling of these environments requires an understanding of this process, including the electronic structure of each ion species as well as their charge exchange cross sections. This dissertation investigates charge exchange processes with highly charged ions which are present in astrophysical environments via a laboratory-based study.

The Clemson University electron beam ion trap (CUEBIT) laboratory was utilized …


A Framework For Statistical Modeling Of Wind Speed And Wind Direction, Eva Murphy Aug 2023

A Framework For Statistical Modeling Of Wind Speed And Wind Direction, Eva Murphy

All Dissertations

Atmospheric near surface wind speed and wind direction play an important role in many applications, ranging from air quality modeling, building design, wind turbine placement to climate change research. It is therefore crucial to accurately estimate the joint probability distribution of wind speed and direction. This dissertation aims to provide a modeling framework for studying the variation of wind speed and wind direction. To this end, three projects are conducted to address some of the key issues for modeling wind vectors.\\

First, a conditional decomposition approach is developed to model the joint distribution of wind speed and direction. Specifically, the …


Composite And Polymer Formulation Employing Sulfur And Bio-Olefin Feedstocks, Claudia V. Lopez Aug 2023

Composite And Polymer Formulation Employing Sulfur And Bio-Olefin Feedstocks, Claudia V. Lopez

All Dissertations

Environmental sustainability represents a challenge for society since industrial growth has a direct impact on natural resources and waste production. New technologies that effectively incorporate waste into renewable resources are critical to the development of a sustainable and circular economy. The manufacturing of structural materials like Portland cement (OPC) is responsible for >8% of the global anthropogenic emissions of carbon dioxide, with ~ 1 kg of CO2 released to the atmosphere for every kilogram of OPC produced. For instance, the development of sustainable structural materials is a key factor to reduce the greenhouse emissions and to attenuate the climate …


Acceleration Methods For Nonlinear Solvers And Application To Fluid Flow Simulations, Duygu Vargun Aug 2023

Acceleration Methods For Nonlinear Solvers And Application To Fluid Flow Simulations, Duygu Vargun

All Dissertations

This thesis studies nonlinear iterative solvers for the simulation of Newtonian and non- Newtonian fluid models with two different approaches: Anderson acceleration (AA), an extrapolation technique that accelerates the convergence rate and improves the robustness of fixed-point iterations schemes, and continuous data assimilation (CDA) which drives the approximate solution towards coarse data measurements or observables by adding a penalty term.

We analyze the properties of nonlinear solvers to apply the AA technique. We consider the Picard iteration for the Bingham equation which models the motion of viscoplastic materials, and the classical iterated penalty Picard and Arrow-Hurwicz iterations for the incompressible …


Algebraic And Integral Closure Of A Polynomial Ring In Its Power Series Ring, Joseph Swanson Aug 2023

Algebraic And Integral Closure Of A Polynomial Ring In Its Power Series Ring, Joseph Swanson

All Dissertations

Let R be a domain. We look at the algebraic and integral closure of a polynomial ring, R[x], in its power series ring, R[[x]]. A power series α(x) ∈ R[[x]] is said to be an algebraic power series if there exists F (x, y) ∈ R[x][y] such that F (x, α(x)) = 0, where F (x, y) ̸ = 0. If F (x, y) is monic, then α(x) is said to be an integral power series. We characterize the units of algebraic and integral power series. We show that the only algebraic power series with infinite radii of convergence are …


Asymptotic Cones Of Quadratically Defined Sets And Their Applications To Qcqps, Alexander Joyce Aug 2023

Asymptotic Cones Of Quadratically Defined Sets And Their Applications To Qcqps, Alexander Joyce

All Dissertations

Quadratically constrained quadratic programs (QCQPs) are a set of optimization problems defined by a quadratic objective function and quadratic constraints. QCQPs cover a diverse set of problems, but the nonconvexity and unboundedness of quadratic constraints lead to difficulties in globally solving a QCQP. This thesis covers properties of unbounded quadratic constraints via a description of the asymptotic cone of a set defined by a single quadratic constraint. A description of the asymptotic cone is provided, including properties such as retractiveness and horizon directions.

Using the characterization of the asymptotic cone, we generalize existing results for bounded quadratically defined regions with …


All Hands On Deck: Choosing Virtual End Effector Representations To Improve Near Field Object Manipulation Interactions In Extended Reality, Roshan Venkatakrishnan Aug 2023

All Hands On Deck: Choosing Virtual End Effector Representations To Improve Near Field Object Manipulation Interactions In Extended Reality, Roshan Venkatakrishnan

All Dissertations

Extended reality, or "XR", is the adopted umbrella term that is heavily gaining traction to collectively describe Virtual reality (VR), Augmented reality (AR), and Mixed reality (MR) technologies. Together, these technologies extend the reality that we experience either by creating a fully immersive experience like in VR or by blending in the virtual and "real" worlds like in AR and MR.

The sustained success of XR in the workplace largely hinges on its ability to facilitate efficient user interactions. Similar to interacting with objects in the real world, users in XR typically interact with virtual integrants like objects, menus, windows, …