Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Quantitative Analysis Of Structure And Bandgap Changes In Graphene Oxide Nanoribbons During Thermal Annealing, Yu Zhu, Xianyu Li, Qinjia Cai, Zhengzong Sun, Gilberto Casillas, Miguel Jose-Yacaman, Rafael Verduzco, James Tour May 2014

Quantitative Analysis Of Structure And Bandgap Changes In Graphene Oxide Nanoribbons During Thermal Annealing, Yu Zhu, Xianyu Li, Qinjia Cai, Zhengzong Sun, Gilberto Casillas, Miguel Jose-Yacaman, Rafael Verduzco, James Tour

Yu Zhu

Graphene oxide nanoribbons (GONRs) are wide bandgap semiconductors that can be reduced to metallic graphene nanoribbons. The transformation of GONRs from their semiconductive to the metallic state by annealing has attracted significant interest due to its simplicity. However, the detailed process by which GONRs transform from widebandgap semiconductors to semimetals with a near zero bandgap is unclear. As a result, precise control of the bandgap between these two states is not currently achievable. Here, we quantitatively examine the removal of oxygen-containing groups and changes in the bandgap during thermal annealing of GONRs. X-ray photoelectron spectroscopy measurements show the progressive removal …


A Seemless Three-Dimensional Carbon Nanotube Graphene Hybrid Material, Yu Zhu, Lei Li, Gilberto Casillas, Zhengzong Sun, Zheng Yan, Gedeng Ruan, Zhiwei Peng, Abdul-Rahman Raji, Carter Kittrell, Robert Hauge, James Tour May 2014

A Seemless Three-Dimensional Carbon Nanotube Graphene Hybrid Material, Yu Zhu, Lei Li, Gilberto Casillas, Zhengzong Sun, Zheng Yan, Gedeng Ruan, Zhiwei Peng, Abdul-Rahman Raji, Carter Kittrell, Robert Hauge, James Tour

Yu Zhu

Graphene and single-walled carbon nanotubes are carbon materials that exhibit excellent electrical conductivities and large specific surface areas. Theoretical work suggested that a covalently bonded graphene/single-walled carbon nanotube hybrid material would extend those properties to three dimensions, and be useful in energy storage and nanoelectronic technologies. Here we disclose a method to bond graphene and single-walled carbon nanotubes seamlessly during the growth stage. The hybrid material exhibits a surface area 42,000m2 g1 with ohmic contact from the vertically aligned single-walled carbon nanotubes to the graphene. Using aberration-corrected scanning transmission electron microscopy, we observed the covalent transformation of sp2 carbon between …