Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson Dec 2023

The Vulnerabilities To The Rsa Algorithm And Future Alternative Algorithms To Improve Security, James Johnson

Cybersecurity Undergraduate Research Showcase

The RSA encryption algorithm has secured many large systems, including bank systems, data encryption in emails, several online transactions, etc. Benefiting from the use of asymmetric cryptography and properties of number theory, RSA was widely regarded as one of most difficult algorithms to decrypt without a key, especially since by brute force, breaking the algorithm would take thousands of years. However, in recent times, research has shown that RSA is getting closer to being efficiently decrypted classically, using algebraic methods, (fully cracked through limited bits) in which elliptic-curve cryptography has been thought of as the alternative that is stronger than …


Integrating Ai Into Uavs, Huong Quach Dec 2023

Integrating Ai Into Uavs, Huong Quach

Cybersecurity Undergraduate Research Showcase

This research project explores the application of Deep Learning (DL) techniques, specifically Convolutional Neural Networks (CNNs), to develop a smoke detection algorithm for deployment on mobile platforms, such as drones and self-driving vehicles. The project focuses on enhancing the decision-making capabilities of these platforms in emergency response situations. The methodology involves three phases: algorithm development, algorithm implementation, and testing and optimization. The developed CNN model, based on ResNet50 architecture, is trained on a dataset of fire, smoke, and neutral images obtained from the web. The algorithm is implemented on the Jetson Nano platform to provide responsive support for first responders. …


Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland Oct 2023

Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland

Mechanical & Aerospace Engineering Theses & Dissertations

Inactive adults often have decreased musculoskeletal health and increased risk factors for chronic diseases. However, there is limited data linking biomechanical measurements of generally healthy young adults to their physical activity levels assessed through questionnaires. Commonly used data collection methods in biomechanics for assessing musculoskeletal health include but are not limited to muscle quality (measured as echo intensity when using ultrasound), isokinetic (i.e., dynamic) muscle strength, muscle activations, and functional movement assessments using motion capture systems. These assessments can be time consuming for both data collection and processing. Therefore, understanding if all biomechanical assessments are necessary to classify the activity …


Optimal Domain-Partitioning Algorithm For Real-Life Transportation Networks And Finite Element Meshes, Jimesh Bhagatji, Sharanabasaweshwara Asundi, Eric Thompson, Duc T. Nguyen Jun 2023

Optimal Domain-Partitioning Algorithm For Real-Life Transportation Networks And Finite Element Meshes, Jimesh Bhagatji, Sharanabasaweshwara Asundi, Eric Thompson, Duc T. Nguyen

Civil & Environmental Engineering Faculty Publications

For large-scale engineering problems, it has been generally accepted that domain-partitioning algorithms are highly desirable for general-purpose finite element analysis (FEA). This paper presents a heuristic numerical algorithm that can efficiently partition any transportation network (or any finite element mesh) into a specified number of subdomains (usually depending on the number of parallel processors available on a computer), which will result in “minimising the total number of system BOUNDARY nodes” (as a primary criterion) and achieve “balancing work loads” amongst the subdomains (as a secondary criterion). The proposed seven-step heuristic algorithm (with enhancement features) is based on engineering common sense …


An Algorithm For Finding Data Dependencies In An Event Graph, Erik J. Jensen Apr 2023

An Algorithm For Finding Data Dependencies In An Event Graph, Erik J. Jensen

Modeling, Simulation and Visualization Student Capstone Conference

This work presents an algorithm for finding data dependencies in a discrete-event simulation system, from the event graph of the system. The algorithm can be used within a parallel discrete-event simulation. Also presented is an experimental system and event graph, which is used for testing the algorithm. Results indicate that the algorithm can provide information about which vertices in the experimental event graph can affect other vertices, and the minimum amount of time in which this interference can occur.


U-Net Based Multiclass Semantic Segmentation For Natural Disaster Based Satellite Imagery, Nishat Ara Nipa Apr 2023

U-Net Based Multiclass Semantic Segmentation For Natural Disaster Based Satellite Imagery, Nishat Ara Nipa

Modeling, Simulation and Visualization Student Capstone Conference

Satellite image analysis of natural disasters is critical for effective emergency response, relief planning, and disaster prevention. Semantic segmentation is believed to be on of the best techniques to capture pixelwise information in computer vision. In this work we will be using a U-Net architecture to do a three class semantic segmentation for the Xview2 dataset to capture the level of damage caused by different natural disaster which is beyond the visual scope of human eyes.


Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang Apr 2023

Enhancing Pedestrian-Autonomous Vehicle Safety In Low Visibility Scenarios: A Comprehensive Simulation Method, Zizheng Yan, Yang Liu, Hong Yang

Modeling, Simulation and Visualization Student Capstone Conference

Self-driving cars raise safety concerns, particularly regarding pedestrian interactions. Current research lacks a systematic understanding of these interactions in diverse scenarios. Autonomous Vehicle (AV) performance can vary due to perception accuracy, algorithm reliability, and environmental dynamics. This study examines AV-pedestrian safety issues, focusing on low visibility conditions, using a co-simulation framework combining virtual reality and an autonomous driving simulator. 40 experiments were conducted, extracting surrogate safety measures (SSMs) from AV and pedestrian trajectories. The results indicate that low visibility can impair AV performance, increasing conflict risks for pedestrians. AV algorithms may require further enhancements and validations for consistent safety performance …


Architectural Design Of A Blockchain-Enabled, Federated Learning Platform For Algorithmic Fairness In Predictive Health Care: Design Science Study, Xueping Liang, Juan Zhao, Yan Chen, Eranga Bandara, Sachin Shetty Jan 2023

Architectural Design Of A Blockchain-Enabled, Federated Learning Platform For Algorithmic Fairness In Predictive Health Care: Design Science Study, Xueping Liang, Juan Zhao, Yan Chen, Eranga Bandara, Sachin Shetty

VMASC Publications

Background: Developing effective and generalizable predictive models is critical for disease prediction and clinical decision-making, often requiring diverse samples to mitigate population bias and address algorithmic fairness. However, a major challenge is to retrieve learning models across multiple institutions without bringing in local biases and inequity, while preserving individual patients' privacy at each site.

Objective: This study aims to understand the issues of bias and fairness in the machine learning process used in the predictive health care domain. We proposed a software architecture that integrates federated learning and blockchain to improve fairness, while maintaining acceptable prediction accuracy and minimizing overhead …


Apt Adversarial Defence Mechanism For Industrial Iot Enabled Cyber-Physical System, Safdar Hussain Javed, Maaz Bin Ahmad, Muhammad Asif, Waseem Akram, Khalid Mahmood, Ashok Kumar Das, Sachin Shetty Jan 2023

Apt Adversarial Defence Mechanism For Industrial Iot Enabled Cyber-Physical System, Safdar Hussain Javed, Maaz Bin Ahmad, Muhammad Asif, Waseem Akram, Khalid Mahmood, Ashok Kumar Das, Sachin Shetty

VMASC Publications

The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods …


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Optimization Of Ported Cfd Kernels On Intel Data Center Gpu Max 1550 Using Oneapi Esimd, Mohammad Zubair, Aaron Walden, Gabriel Nastac, Eric Nielsen, Christoph Bauinger, Xiao Zhu Jan 2023

Optimization Of Ported Cfd Kernels On Intel Data Center Gpu Max 1550 Using Oneapi Esimd, Mohammad Zubair, Aaron Walden, Gabriel Nastac, Eric Nielsen, Christoph Bauinger, Xiao Zhu

Computer Science Faculty Publications

We describe our experience porting FUN3D’s CUDA-optimized kernels to Intel oneAPI SYCL.We faced several challenges, including foremost the suboptimal performance of the oneAPI code on Intel’s new data center GPU. Suboptimal performance of the oneAPI code was due primarily to high register spills, memory latency, and poor vectorization. We addressed these issues by implementing the kernels using Intel oneAPI’s Explicit SIMD SYCL extension (ESIMD) API. The ESIMD API enables the writing of explicitly vectorized kernel code, gives more precise control over register usage and prefetching, and better handles thread divergence compared to SYCL. The ESIMD code outperforms the optimized SYCL …


A Structure-Aware Generative Adversarial Network For Bilingual Lexicon Induction, Bocheng Han, Qian Tao, Lusi Li, Zhihao Xiong Jan 2023

A Structure-Aware Generative Adversarial Network For Bilingual Lexicon Induction, Bocheng Han, Qian Tao, Lusi Li, Zhihao Xiong

Computer Science Faculty Publications

Bilingual lexicon induction (BLI) is the task of inducing word translations with a learned mapping function that aligns monolingual word embedding spaces in two different languages. However, most previous methods treat word embeddings as isolated entities and fail to jointly consider both the intra-space and inter-space topological relations between words. This limitation makes it challenging to align words from embedding spaces with distinct topological structures, especially when the assumption of isomorphism may not hold. To this end, we propose a novel approach called the Structure-Aware Generative Adversarial Network (SA-GAN) model to explicitly capture multiple topological structure information to achieve accurate …


The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe Jan 2023

The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe

Electrical & Computer Engineering Faculty Publications

The effect of the thickness of the dielectric boundary layer that connects a material of refractive index n1 to another of index n2is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter ϵ. For very thin boundary layer the scattering properties of the pulse mimics that found from the Fresnel jump conditions for a plane wave - except that …


Unttangling Irregular Actin Cytoskeleton Architectures In Tomograms Of The Cell With Struwwel Tracer, Salim Sazzed, Peter Scheible, Jing He, Willy Wriggers Jan 2023

Unttangling Irregular Actin Cytoskeleton Architectures In Tomograms Of The Cell With Struwwel Tracer, Salim Sazzed, Peter Scheible, Jing He, Willy Wriggers

Computer Science Faculty Publications

In this work, we established, validated, and optimized a novel computational framework for tracing arbitrarily oriented actin filaments in cryo-electron tomography maps. Our approach was designed for highly complex intracellular architectures in which a long-range cytoskeleton network extends throughout the cell bodies and protrusions. The irregular organization of the actin network, as well as cryo-electron-tomography-specific noise, missing wedge artifacts, and map dimensions call for a specialized implementation that is both robust and efficient. Our proposed solution, Struwwel Tracer, accumulates densities along paths of a specific length in various directions, starting from locally determined seed points. The highest-density paths originating …


Joint Congestion And Contention Avoidance In A Scalable Qos-Aware Opportunistic Routing In Wireless Ad-Hoc Networks, Ali Parsa, Neda Moghim, Sasan Haghani Jan 2023

Joint Congestion And Contention Avoidance In A Scalable Qos-Aware Opportunistic Routing In Wireless Ad-Hoc Networks, Ali Parsa, Neda Moghim, Sasan Haghani

VMASC Publications

Opportunistic routing (OR) can greatly increase transmission reliability and network throughput in wireless ad-hoc networks by taking advantage of the broadcast nature of the wireless medium. However, network congestion is a barrier in the way of OR's performance improvement, and network congestion control is a challenge in OR algorithms, because only the pure physical channel conditions of the links are considered in forwarding decisions. This paper proposes a new method to control network congestion in OR, considering three types of parameters, namely, the backlogged traffic, the traffic flows' Quality of Service (QoS) level, and the channel occupancy rate. Simulation results …


Assessing Univariate And Multivariate Normality In Pls-Sem, Kathy Qing Ma, Weiyong Zhang Jan 2023

Assessing Univariate And Multivariate Normality In Pls-Sem, Kathy Qing Ma, Weiyong Zhang

Information Technology & Decision Sciences Faculty Publications

Partial least squares structural equation modeling (PLS-SEM) has gained popularity among researchers in part due to its relaxed requirement for multivariate normality. One important step in performing structural equation modeling (SEM) is to test the normality assumption. In this paper, we illustrate how to assess univariate and multivariate normality in PLS-SEM using WarpPLS.


Generalized Sparse Bayesian Learning And Application To Image Reconstruction, Jan Glaubitz, Anne Gelb, Guohui Song Jan 2023

Generalized Sparse Bayesian Learning And Application To Image Reconstruction, Jan Glaubitz, Anne Gelb, Guohui Song

Mathematics & Statistics Faculty Publications

Image reconstruction based on indirect, noisy, or incomplete data remains an important yet challenging task. While methods such as compressive sensing have demonstrated high-resolution image recovery in various settings, there remain issues of robustness due to parameter tuning. Moreover, since the recovery is limited to a point estimate, it is impossible to quantify the uncertainty, which is often desirable. Due to these inherent limitations, a sparse Bayesian learning approach is sometimes adopted to recover a posterior distribution of the unknown. Sparse Bayesian learning assumes that some linear transformation of the unknown is sparse. However, most of the methods developed are …


Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan Jan 2023

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan

Physics Faculty Publications

We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in …


Fast Multiscale Functional Estimation In Optimal Emg Placement For Robotic Prosthesis Controllers, Jin Ren, Guohui Song, Lucia Tabacu, Yuesheng Xu Jan 2023

Fast Multiscale Functional Estimation In Optimal Emg Placement For Robotic Prosthesis Controllers, Jin Ren, Guohui Song, Lucia Tabacu, Yuesheng Xu

Mathematics & Statistics Faculty Publications

Electromyogram (EMG) signals play a significant role in decoding muscle contraction information for robotic hand prosthesis controllers. Widely applied decoders require a large amount of EMG signals sensors, resulting in complicated calculations and unsatisfactory predictions. By the biomechanical process of single degree-of-freedom human hand movements, only several EMG signals are essential for accurate predictions. Recently, a novel predictor of hand movements adopted a multistage sequential adaptive functional estimation (SAFE) method based on the historical functional linear model (FLM) to select important EMG signals and provide precise projections.

However, SAFE repeatedly performs matrix-vector multiplications with a dense representation matrix of the …


Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev Jan 2023

Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev

Physics Faculty Publications

We present a new automated method for finding integrable symplectic maps of the plane. These dynamical systems possess a hidden symmetry associated with an existence of conserved quantities, i.e., integrals of motion. The core idea of the algorithm is based on the knowledge that the evolution of an integrable system in the phase space is restricted to a lower-dimensional submanifold. Limiting ourselves to polygon invariants of motion, we analyze the shape of individual trajectories thus successfully distinguishing integrable motion from chaotic cases. For example, our method rediscovers some of the famous McMillan-Suris integrable mappings and ultradiscrete Painlevé equations. In total, …


Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

Deep learning (DL)-based medical imaging and image segmentation algorithms achieve impressive performance on many benchmarks. Yet the efficacy of deep learning methods for future clinical applications may become questionable due to the lack of ability to reason with uncertainty and interpret probable areas of failures in prediction decisions. Therefore, it is desired that such a deep learning model for segmentation classification is able to reliably predict its confidence measure and map back to the original imaging cases to interpret the prediction decisions. In this work, uncertainty estimation for multiorgan segmentation task is evaluated to interpret the predictive modeling in DL …


Adaptive Critic Network For Person Tracking Using 3d Skeleton Data, Joseph G. Zalameda, Alex Glandon, Khan M. Iftekharuddin, Mohammad S. Alam (Ed.), Vijayan K. Asari (Ed.) Jan 2023

Adaptive Critic Network For Person Tracking Using 3d Skeleton Data, Joseph G. Zalameda, Alex Glandon, Khan M. Iftekharuddin, Mohammad S. Alam (Ed.), Vijayan K. Asari (Ed.)

Electrical & Computer Engineering Faculty Publications

Analysis of human gait using 3-dimensional co-occurrence skeleton joints extracted from Lidar sensor data has been shown a viable method for predicting person identity. The co-occurrence based networks rely on the spatial changes between frames of each joint in the skeleton data sequence. Normally, this data is obtained using a Lidar skeleton extraction method to estimate these co-occurrence features from raw Lidar frames, which can be prone to incorrect joint estimations when part of the body is occluded. These datasets can also be time consuming and expensive to collect and typically offer a small number of samples for training and …


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


An Explainable Artificial Intelligence Framework For The Predictive Analysis Of Hypo And Hyper Thyroidism Using Machine Learning Algorithms, Md. Bipul Hossain, Anika Shama, Apurba Adhikary, Avi Deb Raha, K. M. Aslam Uddin, Mohammad Amzad Hossain, Imtia Islam, Saydul Akbar Murad, Md. Shirajum Munir, Anupam Kumur Bairagi Jan 2023

An Explainable Artificial Intelligence Framework For The Predictive Analysis Of Hypo And Hyper Thyroidism Using Machine Learning Algorithms, Md. Bipul Hossain, Anika Shama, Apurba Adhikary, Avi Deb Raha, K. M. Aslam Uddin, Mohammad Amzad Hossain, Imtia Islam, Saydul Akbar Murad, Md. Shirajum Munir, Anupam Kumur Bairagi

Electrical & Computer Engineering Faculty Publications

The thyroid gland is the crucial organ in the human body, secreting two hormones that help to regulate the human body's metabolism. Thyroid disease is a severe medical complaint that could be developed by high Thyroid Stimulating Hormone (TSH) levels or an infection in the thyroid tissues. Hypothyroidism and hyperthyroidism are two critical conditions caused by insufficient thyroid hormone production and excessive thyroid hormone production, respectively. Machine learning models can be used to precisely process the data generated from different medical sectors and to build a model to predict several diseases. In this paper, we use different machine-learning algorithms to …