Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Mesmerizing Moon Mysteries: Unraveling The Compositions Of Irregular Mare Patches (Imps) Using Remote Observations, Nicholas G. Piskurich Jan 2024

Mesmerizing Moon Mysteries: Unraveling The Compositions Of Irregular Mare Patches (Imps) Using Remote Observations, Nicholas G. Piskurich

Graduate Thesis and Dissertation 2023-2024

Compositional characterization of lunar surface features informs our understanding of the Moon's thermal and magmatic evolution. We investigated the compositions of hypothesized volcanic features known as irregular mare patches (IMPs) and their surroundings to constrain formation mechanisms. We used six datasets to assess the composition of 12 IMPs: 1) Moon Mineralogy Mapper (M3) derived spectral parameters (e.g., band center positions, shapes), 2) Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer Experiment (Diviner) measured Christiansen feature (CF) position, 3) SELENE (Kaguya) Multiband Imager (MI) FeO abundance, 4) Clementine 5-band (Ultraviolet/Visible)-derived FeO abundance, 5) LRO Wide Angle Camera (WAC) TiO2 abundance, …


Characterizing The Particle Size Distribution In Saturn's Rings Using Cassini Uvis Stellar Occultation Data, Stephanie Eckert Jan 2022

Characterizing The Particle Size Distribution In Saturn's Rings Using Cassini Uvis Stellar Occultation Data, Stephanie Eckert

Electronic Theses and Dissertations, 2020-

NASA's Cassini mission to Saturn revolutionized modern understanding of the planet's vast and intricate ring system. We use stellar occultation data from Cassini's UVIS High Speed Photometer (HSP) to characterize the particle size distribution in the rings with two methods. First, we discern the sizes of the smallest particles at ring edges by forward-modeling observed diffraction signatures which appear as spikes in the signal, the shape and amplitude of which depends on the size and abundance of the smallest particles. We then probe the upper end of the size distribution using occultation statistics. Although the distribution of photon counts in …


Analysis Of Bending Waves In Saturn's Rings, Claudia Denise Orozco Vega Jan 2021

Analysis Of Bending Waves In Saturn's Rings, Claudia Denise Orozco Vega

Honors Undergraduate Theses

Saturn's rings are a complex, dynamic system that can provide unique insight into the structure and features of the planet and surrounding system. We use stellar occultation data of Saturn's rings collected from the Cassini Ultraviolet Imaging Spectrograph to visualize and analyze bending waves present within the rings. Analysis of the propagation of these waves gives insight into the surface mass density of the local ring region and can be used to further our understanding of ring dynamics and ring formation. Our analysis of the Mimas 7:4 bending wave estimated a surface mass density between 30 g cm-2 and …


Exploring Mesoscale Structures Using Chord Occultations Of Saturn's Rings, Lamia Benyamine Jan 2021

Exploring Mesoscale Structures Using Chord Occultations Of Saturn's Rings, Lamia Benyamine

Honors Undergraduate Theses

The Cassini spacecraft orbited Saturn for over 13 years and collected stellar occultations using an Ultraviolet Imaging Spectrograph (UVIS). Chord occultations were analyzed using autocorrelations at minimum ring plane radius to visualize the structure and correlation in the azimuthal direction. These particle tracking occultations cut a chord across the rings in the path of the star. By taking the autocorrelation of these chord occultations, 8 out of the 66 showed clumping within the first 3.0 km in azimuth, representing signs of a structure. Six of those occultations could be moonlets or propellers as their minimum ring plane radii are in …


Simulating Ejecta Blown Off The Lunar Surface Due To Landing Spacecraft Using The Mercury N-Body Integrator, Isabel Rivera Jan 2021

Simulating Ejecta Blown Off The Lunar Surface Due To Landing Spacecraft Using The Mercury N-Body Integrator, Isabel Rivera

Electronic Theses and Dissertations, 2020-

The experiences of the Apollo lunar landings revealed the danger lunar dust can pose to surrounding hardware, outposts, and orbiting spacecraft. Future lunar missions such as the Artemis program will require more information about the trajectories of ejecta blown by landers to protect orbiting spacecraft such as the Lunar Gateway. In this paper, we simulate lunar lander ejecta trajectories using the Mercury N-body integrator. We placed cones of test particles on the Moon at the North Pole, South Pole, and Equator with various ejection speeds and angles. The results show that particles ejected at speeds near the Moon's escape velocity …


Determining The Small-Scale Structure And Particle Properties In Saturn's Rings From Stellar And Radio Occultations, Richard Jerousek Jan 2018

Determining The Small-Scale Structure And Particle Properties In Saturn's Rings From Stellar And Radio Occultations, Richard Jerousek

Electronic Theses and Dissertations

Saturn's rings consist of icy particles of various sizes ranging from millimeters to several meters. Particles may aggregate into ephemeral elongated clumps known as self-gravity wakes in regions where the surface mass density and epicyclic frequency give a Toomre critical wavelength which is much larger than the largest individual particles (Julian and Toomre 1966). Optical depth measurements at different wavelengths can be used to constrain the sizes of individual particles (Zebker et al. 1985, Marouf et al. 1983) while measurements of optical depths spanning many viewing geometries can be used to determine the properties of self-gravity wakes (Colwell et al. …


The Physical Properties And Composition Of Main-Belt Asteroids From Infrared Spectroscopy, Zoe Landsman Jan 2017

The Physical Properties And Composition Of Main-Belt Asteroids From Infrared Spectroscopy, Zoe Landsman

Electronic Theses and Dissertations

Asteroids are the remnants of planet formation, and as such, they represent a record of the physical and chemical conditions in the early solar system and its evolution over the past 4.6 billion years. Asteroids are relatively accessible by spacecraft, and thus may be a source of the raw materials necessary for future human exploration and settlement of space. Those on Earth-crossing orbits pose impact hazards for which mitigation strategies must be developed. For these reasons, several missions to asteroids are in progress or planned with the support of the National Aeronautics and Space Administration (NASA) and other national space …


Maya Eclipses: Modern Data, The Triple Tritos And The Double Tzolkin, William Earl Beck Jan 2007

Maya Eclipses: Modern Data, The Triple Tritos And The Double Tzolkin, William Earl Beck

Electronic Theses and Dissertations

The Eclipse Table, on pages 51-58, of the Dresden Codex has long fascinated Maya scholars. Researchers use the mean-value method of 173.3 days to determine nodal passage that is the place where eclipses can occur. These studies rely on Oppolzer's Eclipse Canon and Schram's Moon Phase Tables to verify eclipse occurrences. The newer canons of Jean Meeus and Bao-Lin Liu use decimal accuracy. What would be the effect of modern astronomical data on the previous studies and the Maya Eclipse Table? The study utilizes a general view of eclipses that includes eclipses not visible to the Maya. Lunar eclipses are …