Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Life Cycle Assessment Projection Of Photovoltaic Cells: A Case Study On Energy Demand Of Quantum Wire Based Photovoltaic Technology Research, Shilpi Mukherjee Dec 2014

Life Cycle Assessment Projection Of Photovoltaic Cells: A Case Study On Energy Demand Of Quantum Wire Based Photovoltaic Technology Research, Shilpi Mukherjee

Graduate Theses and Dissertations

With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA).

LCA is the …


Design Of A High Temperature Subsurface Thermal Energy Storage System, Qi Zheng May 2014

Design Of A High Temperature Subsurface Thermal Energy Storage System, Qi Zheng

All Theses

Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art …


Micro (Wind) Generation: 'Urban Resource Potential & Impact On Distribution Network Power Quality', Keith Sunderland Jan 2014

Micro (Wind) Generation: 'Urban Resource Potential & Impact On Distribution Network Power Quality', Keith Sunderland

Doctoral

Of the forms of renewable energy available, wind energy is at the forefront of the European (and Irish) green initiative with wind farms supplying a significant proportion of electrical energy demand. This type of distributed generation (DG) represents a ‘paradigm shift’ towards increased decentralisation of energy supply. However, because of the distance of most DG from urban areas where demand is greatest, there is a loss of efficiency. The solution, placing wind energy systems in urban areas, faces significant challenges. The complexities associated with the urban terrain include planning, surface heterogeneity that reduces the available wind resource and technology obstacles …


Calculating The Solar Energy Of A Flat Plate Collector, Ariane Rosario Jan 2014

Calculating The Solar Energy Of A Flat Plate Collector, Ariane Rosario

Undergraduate Journal of Mathematical Modeling: One + Two

The amount of solar energy that could be obtained by a flat plate solar collector of one square meter dimension is calculated in three different locations: Tampa FL, Fairbanks AL, and Pontianak Indonesia, considering the varying sunset time for each day of the year. The results show that if the collectors are placed near the equator, more total energy could be obtained. In fact, by placing a solar collector in Pontianak, Indonesia 12.42% more solar energy can be obtained than by placing it in Tampa and 96.9% more solar energy than Alaska.