Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistics and Probability

Model selection

Selected Works

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Extracting Information From Functional Connectivity Maps Via Function-On-Scalar Regression, Philip T. Reiss, Maarten Mennes, Eva Petkova, Lei Huang, Matthew J. Hoptman, Bharat B. Biswal, Stanley J. Colcombe, Xi-Nian Zuo, Michael P. Milham Dec 2010

Extracting Information From Functional Connectivity Maps Via Function-On-Scalar Regression, Philip T. Reiss, Maarten Mennes, Eva Petkova, Lei Huang, Matthew J. Hoptman, Bharat B. Biswal, Stanley J. Colcombe, Xi-Nian Zuo, Michael P. Milham

Lei Huang

Functional connectivity of an individual human brain is often studied by acquiring a resting state functional magnetic resonance imaging scan, and mapping the correlation of each voxel's BOLD time series with that of a seed region. As large collections of such maps become available, including multisite data sets, there is an increasing need for ways to distill the information in these maps in a readily visualized form. Here we propose a two-step analytic strategy. First, we construct connectivity-distance profiles, which summarize the connectivity of each voxel in the brain as a function of distance from the seed, a functional relationship …


Extracting Information From Functional Connectivity Maps Via Function-On-Scalar Regression, Philip T. Reiss, Maarten Mennes, Eva Petkova, Lei Huang, Matthew J. Hoptman, Bharat B. Biswal, Stanley J. Colcombe, Xi-Nian Zuo, Michael P. Milham Dec 2010

Extracting Information From Functional Connectivity Maps Via Function-On-Scalar Regression, Philip T. Reiss, Maarten Mennes, Eva Petkova, Lei Huang, Matthew J. Hoptman, Bharat B. Biswal, Stanley J. Colcombe, Xi-Nian Zuo, Michael P. Milham

Philip T. Reiss

Functional connectivity of an individual human brain is often studied by acquiring a resting state functional magnetic resonance imaging scan, and mapping the correlation of each voxel's BOLD time series with that of a seed region. As large collections of such maps become available, including multisite data sets, there is an increasing need for ways to distill the information in these maps in a readily visualized form. Here we propose a two-step analytic strategy. First, we construct connectivity-distance profiles, which summarize the connectivity of each voxel in the brain as a function of distance from the seed, a functional relationship …