Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Quantifying Controllability In Temporal Networks With Uncertainty, James C. Boerkoel Jr., Lindsay Popowski, Michael Gao, Hemeng Li, Savana Ammons, Shyan Akmal Oct 2020

Quantifying Controllability In Temporal Networks With Uncertainty, James C. Boerkoel Jr., Lindsay Popowski, Michael Gao, Hemeng Li, Savana Ammons, Shyan Akmal

All HMC Faculty Publications and Research

Controllability for Simple Temporal Networks with Uncertainty (STNUs) has thus far been limited to three levels: strong, dynamic, and weak. Because of this, there is currently no systematic way for an agent to assess just how far from being controllable an uncontrollable STNU is. We provide new insights inspired by a geometric interpretation of STNUs to introduce the degrees of strong and dynamic controllability - continuous metrics that measure how far a network is from being controllable. We utilize these metrics to approximate the probabilities that an STNU can be dispatched successfully offline and online respectively. We introduce new methods …


Dynamic Control Of Probabilistic Simple Temporal Networks, James C. Boerkoel Jr., Michael Gao, Lindsay Popowski Apr 2020

Dynamic Control Of Probabilistic Simple Temporal Networks, James C. Boerkoel Jr., Michael Gao, Lindsay Popowski

All HMC Faculty Publications and Research

The controllability of a temporal network is defined as an agent’s ability to navigate around the uncertainty in its schedule and is well-studied for certain networks of temporal constraints. However, many interesting real-world problems can be better represented as Probabilistic Simple Temporal Networks (PSTNs) in which the uncertain durations are represented using potentially-unbounded probability density functions. This can make it inherently impossible to control for all eventualities. In this paper, we propose two new dynamic controllability algorithms that attempt to maximize the likelihood of successfully executing a schedule within a PSTN. The first approach, which we call MIN-LOSS DC, finds …