Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 41

Full-Text Articles in Physical Sciences and Mathematics

Eccentric Neutron Star Disk Driven Type Ii Outburst Pairs In Be/X-Ray Binaries, Alessia Franchini, Rebecca G. Martin Dec 2021

Eccentric Neutron Star Disk Driven Type Ii Outburst Pairs In Be/X-Ray Binaries, Alessia Franchini, Rebecca G. Martin

Physics & Astronomy Faculty Research

Be star X-ray binaries are transient systems that show two different types of outbursts. Type I outbursts occur each orbital period while type II outbursts have a period and duration that are not related to any periodicity of the binary system. Type II outbursts may be caused by mass transfer to the neutron star from a highly eccentric Be star disk. A sufficiently misaligned Be star decretion disk undergoes secular Von Zeipel-Lidov-Kozai (ZLK) oscillations of eccentricity and inclination. Observations show that in some systems the type II outbursts come in pairs with the second being of lower luminosity. We use …


Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin Nov 2021

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin

Physics & Astronomy Faculty Research

The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we …


Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte Sep 2021

Gw Ori: Circumtriple Rings And Planets, Jeremy L. Smallwood, Rebecca Nealon, Cheng Chen, Rebecca G. Martin, Jiaqing Bi, Ruobing Dong, Christophe Pinte

Physics & Astronomy Faculty Research

GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at 100 au and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations and …


Terrestrial Planet Formation In A Circumbinary Disc Around A Coplanar Binary, Anna C. Childs, Rebecca G. Martin Aug 2021

Terrestrial Planet Formation In A Circumbinary Disc Around A Coplanar Binary, Anna C. Childs, Rebecca G. Martin

Physics & Astronomy Faculty Research

With N-body simulations, we model terrestrial circumbinary planet (CBP) formation with an initial surface density profile motivated by hydrodynamic circumbinary gas disc simulations. The binary plays an important role in shaping the initial distribution of bodies. After the gas disc has dissipated, the torque from the binary speeds up the planet formation process by promoting body-body interactions but also drives the ejection of planet building material from the system at an early time. Fewer but more massive planets form around a close binary compared to a single star system. A sufficiently wide or eccentric binary can prohibit terrestrial planet formation. …


On The Role Of Resonances In Polluting White Dwarfs By Asteroids, Jeremy L. Smallwood, Rebecca G. Martin, Mario Livio, Dimitri Veras Apr 2021

On The Role Of Resonances In Polluting White Dwarfs By Asteroids, Jeremy L. Smallwood, Rebecca G. Martin, Mario Livio, Dimitri Veras

Physics & Astronomy Faculty Research

Pollution of white dwarf atmospheres may be caused by asteroids that originate from the locations of secular and mean-motion resonances in planetary systems. Asteroids in these locations experience increased eccentricity, leading to tidal disruption by the white dwarf. We examine how the ν6 secular resonance shifts outwards into a previously stable region of the asteroid belt, as the star evolves to a white dwarf. Analytic secular models require a planet to be engulfed in order to shift the resonance. We show with numerical simulations that as a planet gets engulfed by the evolving star, the secular resonance shifts and the …


Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr Jan 2021

Kozai–Lidov Oscillations Triggered By A Tilt Instability Of Detached Circumplanetary Discs, Rebecca G. Martin, Zhaohuan Zhu, Philip J. Armitage, Chao-Chin Yang, Hans Baehr

Physics & Astronomy Faculty Research

Circumplanetary discs can be linearly unstable to the growth of disc tilt in the tidal potential of the star–planet system. We use 3D hydrodynamical simulations to characterize the disc conditions needed for instability, together with its long-term evolution. Tilt growth occurs for disc aspect ratios, evaluated near the disc outer edge, of H/r ≳ 0.05, with a weak dependence on viscosity in the wave-like regime of warp propagation. Lower mass giant planets are more likely to have circumplanetary discs that satisfy the conditions for instability. We show that the tilt instability can excite the inclination to above the threshold where …


The Evolution Of A Circumplanetary Disc With A Dead Zone, Cheng Chen, Chao Chin Yang, Rebecca G. Martin, Zhaohuan Zhu Nov 2020

The Evolution Of A Circumplanetary Disc With A Dead Zone, Cheng Chen, Chao Chin Yang, Rebecca G. Martin, Zhaohuan Zhu

Physics & Astronomy Faculty Research

© 2021 Oxford University Press. All rights reserved. We investigate whether the regular Galilean satellites could have formed in the dead zone of a circumplanetary disc. A dead zone is a region of weak turbulence in which the magnetorotational instability is suppressed, potentially an ideal environment for satellite formation. With the grid-based hydrodynamic code FARGO3D, we examine the evolution of a circumplanetary disc model with a dead zone. Material accumulates in the dead zone of the disc leading to a higher total mass and but a similar temperature profile compared to a fully turbulent disc model. The tidal torque increases …


A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic May 2020

A Mildly Relativistic Outflow From The Energentic, Fast-Rising Blue Optical Transient Css161010 In A Dwarf Galaxy, Deanne L. Coppejans, R. Margutti, G. Terreran, A. J. Nayana, E. R. Coughlin, T. Laskar, K. D. Alexander, M. Bietenholz, D. Caprioli, P. Chandra, M. R. Drout, D. Frederiks, C. Frohmaier, K. H. Hurley, C. S. Kochanek, M. Macleod, A. Meisner, P. E. Nugent, A. Ridnaia, D. J. Sand, D. Svinkin, C. Ward, S. Yang, A. Baldeschi, I. V. Chilingarian, Y. Dong, C. Esquivia, W. Fong, C. Guidorzi, P. Lundqvist, D. Milisavljevic

Physics & Astronomy Faculty Research

We present X-ray and radio observations of the Fast Blue Optical Transient CRTS-CSS161010 J045834−081803 (CSS161010 hereafter) at t = 69–531 days. CSS161010 shows luminous X-ray (L x ~ 5 × 1039 erg s−1) and radio (L ν ~ 1029 erg s−1 Hz−1) emission. The radio emission peaked at ~100 days post-transient explosion and rapidly decayed. We interpret these observations in the context of synchrotron emission from an expanding blast wave. CSS161010 launched a mildly relativistic outflow with velocity Γβc ≥ 0.55c at ~100 days. This is faster than the non-relativistic AT 2018cow (Γβc ~ 0.1c) and closer to ZTF18abvkwla (Γβc …


The Planetary Luminosity Problem: " Missing Planets" And The Observational Consequences Of Episodi Accretion, Sean D. Brittain, Joan R. Najita, Ruobing Dong, Zhaohuan Zhu May 2020

The Planetary Luminosity Problem: " Missing Planets" And The Observational Consequences Of Episodi Accretion, Sean D. Brittain, Joan R. Najita, Ruobing Dong, Zhaohuan Zhu

Physics & Astronomy Faculty Research

The high occurrence rates of spiral arms and large central clearings in protoplanetary disks, if interpreted as signposts of giant planets, indicate that gas giants commonly form as companions to young stars (Myr) at orbital separations of 10–300 au. However, attempts to directly image this giant planet population as companions to more mature stars (>10 Myr) have yielded few successes. This discrepancy could be explained if most giant planets form by "cold start," i.e., by radiating away much of their formation energy as they assemble their mass, rendering them faint enough to elude detection at later times. In that …


A Fast Radio Burst Discovered In Fast Drift Scan Survey, Weiwei Zhu, Di Li, Rui Luo, Chenchen Miao, Bing Zhang, Laura Spitler, Duncan Lorimer, Michael Kramer, David Champion, Youling Yue, Andrew Cameron, Marilyn Cruces, Ran Duan, Yi Feng, Jun Han, George Hobbs, Chenhui Niu, Jiarui Niu, Zhichen Pan, Lei Qian, Dai Shi, Ningyu Tang, Pei Wang, Hongfeng Wang, Mao Yuan, Lei Zhang, Xinxin Zhang, Shuyun Cao, Li Feng, Hengqian Gan, Long Gao May 2020

A Fast Radio Burst Discovered In Fast Drift Scan Survey, Weiwei Zhu, Di Li, Rui Luo, Chenchen Miao, Bing Zhang, Laura Spitler, Duncan Lorimer, Michael Kramer, David Champion, Youling Yue, Andrew Cameron, Marilyn Cruces, Ran Duan, Yi Feng, Jun Han, George Hobbs, Chenhui Niu, Jiarui Niu, Zhichen Pan, Lei Qian, Dai Shi, Ningyu Tang, Pei Wang, Hongfeng Wang, Mao Yuan, Lei Zhang, Xinxin Zhang, Shuyun Cao, Li Feng, Hengqian Gan, Long Gao

Physics & Astronomy Faculty Research

We report the discovery of a highly dispersed fast radio burst (FRB), FRB 181123, from an analysis of ~1500 hr of drift scan survey data taken using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The pulse has three distinct emission components, which vary with frequency across our 1.0–1.5 GHz observing band. We measure the peak flux density to be... (See full abstract in article).


Dust Condensation In Evolving Discs And The Composition Of Planetary Building Blocks, Min Li, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu, Jason H. Steffen May 2020

Dust Condensation In Evolving Discs And The Composition Of Planetary Building Blocks, Min Li, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu, Jason H. Steffen

Physics & Astronomy Faculty Research

Partial condensation of dust from the Solar nebula is likely responsible for the diverse chemical compositions of chondrites and rocky planets/planetesimals in the inner Solar system. We present a forward physical–chemical model of a protoplanetary disc to predict the chemical compositions of planetary building blocks that may form from such a disc. Our model includes the physical evolution of the disc and the condensation, partial advection, and decoupling of the dust within it. The chemical composition of the condensate changes with time and radius. We compare the results of two dust condensation models: one where an element condenses when the …


Swift Spectroscopy Of The Accretion Disk Wind In The Black Hole Gro J1655-40, M. Balakrishnan, J. M. Miller, N. Trueba, M. Reynolds, J. Raymond, Daniel Proga, A. C. Fabian, T. Kallman, J. Kaastra Apr 2020

Swift Spectroscopy Of The Accretion Disk Wind In The Black Hole Gro J1655-40, M. Balakrishnan, J. M. Miller, N. Trueba, M. Reynolds, J. Raymond, Daniel Proga, A. C. Fabian, T. Kallman, J. Kaastra

Physics & Astronomy Faculty Research

Chandra obtained two High Energy Transmission Grating spectra of the stellar-mass black hole GRO J1655−40 during its 2005 outburst, revealing a rich and complex disk wind. Soon after its launch, the Neil Gehrels Swift Observatory began monitoring the same outburst. Some X-ray Telescope (XRT) observations were obtained in a mode that makes it impossible to remove strong Mn calibration lines, so the Fe Kα line region in the spectra was previously neglected. However, these lines enable a precise calibration of the energy scale, facilitating studies of the absorption-dominated disk wind and its velocity shifts. Here we present fits to 15 …


Alma 0.88 Mm Survey Of Disks Around Planetary-Mass Companions, Ya-Lin Wu, Brendan P. Bowler, Patrick D. Sheehan, Sean M. Andrews, Gregory J. Herczeg, Adam L. Kraus, Luca Ricci, David J. Wilner, Zhaohuan Zhu Apr 2020

Alma 0.88 Mm Survey Of Disks Around Planetary-Mass Companions, Ya-Lin Wu, Brendan P. Bowler, Patrick D. Sheehan, Sean M. Andrews, Gregory J. Herczeg, Adam L. Kraus, Luca Ricci, David J. Wilner, Zhaohuan Zhu

Physics & Astronomy Faculty Research

Characterizing the physical properties and compositions of circumplanetary disks can provide important insights into the formation of giant planets and satellites. We report Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum observations of six planetary-mass (10–20 M Jup) companions: CT Cha b, 1RXS 1609 b, ROXs 12 b, ROXs 42B b, DH Tau b, and FU Tau b. No continuum sources are detected at the locations of the companions down to 3σ limits of 120–210 μJy. Given these nondetections, it is not clear whether disks around planetary-mass companions indeed follow the disk-flux–host-mass trend in the stellar regime. The faint …


Global 3d Radiation Magnetohydrodynamic Simulations For Fu Ori's Accretion Disc And Observational Signatures Of Magnetic Fields, Zhaohuan Zhu, Yan-Fei Jiang, James M. Stone Apr 2020

Global 3d Radiation Magnetohydrodynamic Simulations For Fu Ori's Accretion Disc And Observational Signatures Of Magnetic Fields, Zhaohuan Zhu, Yan-Fei Jiang, James M. Stone

Physics & Astronomy Faculty Research

FU Ori is the prototype of FU Orionis systems that are outbursting protoplanetary discs. Magnetic fields in FU Ori’s accretion discs have previously been detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Ori’s inner accretion disc. We find that (1) when the disc is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z ∼ R, similar to the ‘surface accretion’ mechanism in previous locally isothermal MHD simulations. (2) A moderate disc wind is launched in the vertical field simulations with a terminal speed of …


Fast Radio Bursts As Strong Waves Interacting With The Ambient Medium, Yuan-Pei Yang, Bing Zhang Mar 2020

Fast Radio Bursts As Strong Waves Interacting With The Ambient Medium, Yuan-Pei Yang, Bing Zhang

Physics & Astronomy Faculty Research

Fast radio bursts (FRBs) are mysterious radio transients whose physical origin is still unknown. Within a few astronomical units near an FRB source, the electric field of the electromagnetic wave is so large that the electron oscillation velocity becomes relativistic, which makes the classical Thomson scattering theory and the linear plasma theory invalid. We discuss FRBs as strong waves interacting with the ambient medium, in terms of both electron motion properties and plasma properties. Several novel features are identified. (1) The cross section of Thomson scattering is significantly enhanced for the scattering photons. (2) On the other hand, because of …


On The Frb Luminosity Function – – Ii. Event Rate Density, Rui Luo, Yunpeng Men, Kejia Lee, Weiyang Wang, D. R. Lorimer, Bing Zhang Mar 2020

On The Frb Luminosity Function – – Ii. Event Rate Density, Rui Luo, Yunpeng Men, Kejia Lee, Weiyang Wang, D. R. Lorimer, Bing Zhang

Physics & Astronomy Faculty Research

The luminosity function of Fast Radio Bursts (FRBs), defined as the event rate per unit cosmic co-moving volume per unit luminosity, may help to reveal the possible origins of FRBs and design the optimal searching strategy. With the Bayesian modelling, we measure the FRB luminosity function using 46 known FRBs. Our Bayesian framework self-consistently models the selection effects, including the survey sensitivity, the telescope beam response, and the electron distributions from Milky Way/ the host galaxy/ local environment of FRBs. Different from the previous companion paper, we pay attention to the FRB event rate density and model the event counts …


Fast Radio Bursts From Interacting Binary Neutron Star Systems, Bing Zhang Feb 2020

Fast Radio Bursts From Interacting Binary Neutron Star Systems, Bing Zhang

Physics & Astronomy Faculty Research

Recent observations of repeating fast radio bursts (FRBs) suggest that some FRBs reside in an environment consistent with that of binary neutron star (BNS) mergers. The bursting rate for repeaters could be very high and the emission site is likely from a magnetosphere. We discuss a hypothesis of producing abundant repeating FRBs in BNS systems. Decades to centuries before a BNS system coalesces, the magnetospheres of the two neutron stars start to interact relentlessly. Abrupt magnetic reconnection accelerates particles, which emit coherent radio waves in bunches via curvature radiation. FRBs are detected as these bright radiation beams point toward Earth. …


Asteroid Belt Survival Through Stellar Evolution: Dependence On The Stellar Mass, Rebecca G. Martin, Mario Livio, Jeremy L. Smallwood, Cheng Chen Feb 2020

Asteroid Belt Survival Through Stellar Evolution: Dependence On The Stellar Mass, Rebecca G. Martin, Mario Livio, Jeremy L. Smallwood, Cheng Chen

Physics & Astronomy Faculty Research

Polluted white dwarfs are generally accreting terrestrial-like material that may originate from a debris belt like the asteroid belt in the Solar system. ... See full text for complete abstract.


The Effects Of Disc Self-Gravity And Radiative Cooling On The Formation Of Gaps And Spirals By Young Planets, Shangjia Zhang, Zhaohuan Zhu Feb 2020

The Effects Of Disc Self-Gravity And Radiative Cooling On The Formation Of Gaps And Spirals By Young Planets, Shangjia Zhang, Zhaohuan Zhu

Physics & Astronomy Faculty Research

We have carried out 2D hydrodynamical simulations to study the effects of disc self-gravity and radiative cooling on the formation of gaps and spirals. (1) With disc self-gravity included, we find stronger, more tightly wound spirals and deeper gaps in more massive discs. The deeper gaps are due to the larger Angular Momentum Flux (AMF) of the waves excited in more massive discs, as expected from the linear theory. The position of the secondary gap does not change, provided that the disc is not extremely massive (Q ≳ 2). (2) With radiative cooling included, the excited spirals become monotonically more …


Effects Of Opacity Temperature Dependence On Radiatively Accelerated Clouds, Sergei Dyda, Daniel Proga, Christopher S. Reynolds Feb 2020

Effects Of Opacity Temperature Dependence On Radiatively Accelerated Clouds, Sergei Dyda, Daniel Proga, Christopher S. Reynolds

Physics & Astronomy Faculty Research

We study how different opacity–temperature scalings affect the dynamical evolution of irradiated gas clouds using time-dependent radiation-hydrodynamics simulations. When clouds are optically thick, the bright side heats up and expands, accelerating the cloud via the rocket effect. Clouds that become more optically thick as they heat accelerate ∼35 per cent faster than clouds that become optically thin. An enhancement of ∼85 per cent in the acceleration can be achieved by having a broken power-law opacity profile, which allows the evaporating gas driving the cloud to become optically thin and not attenuate the driving radiation flux. We find that up to …


Resolving The Fu Orionis System With Alma: Interacting Twin Disks?, Sebastian Perez, Antonio Hales, Hauyu Baobab Liu, Zhaohuan Zhu, Simon Casassus, Jonathan Williams, Alice Zurlo, Nicolas Cuello, Lucas Cieza, David Principe Jan 2020

Resolving The Fu Orionis System With Alma: Interacting Twin Disks?, Sebastian Perez, Antonio Hales, Hauyu Baobab Liu, Zhaohuan Zhu, Simon Casassus, Jonathan Williams, Alice Zurlo, Nicolas Cuello, Lucas Cieza, David Principe

Physics & Astronomy Faculty Research

FU Orionis objects are low-mass pre-main sequence stars characterized by dramatic outbursts several magnitudes in brightness. These outbursts are linked to episodic accretion events in which stars gain a significant portion of their mass. The physical processes behind these accretion events are not yet well understood. The archetypal FU Ori system, FU Orionis, is composed of two young stars with detected gas and dust emission. The continuum emitting regions have not been resolved until now. Here, we present 1.3 mm observations of the FU Ori binary system using the Atacama Large Millimeter/submillimeter Array. The disks are resolved at 40 mas …


Relation Between Gravitational Mass And Baryonic Mass For Non-Rotating And Rapidly Rotating Neutron Stars, He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein Jan 2020

Relation Between Gravitational Mass And Baryonic Mass For Non-Rotating And Rapidly Rotating Neutron Stars, He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein

Physics & Astronomy Faculty Research

With a selected sample of neutron star (NS) equations of state (EOSs) that are consistent with the current observations and have a range of maximum masses, we investigate the relations between NS gravitational mass Mg and baryonic mass Mb, and the relations between the maximum NS mass supported through uniform rotation (Mmax) and that of nonrotating NSs (MTOV). We find that for an EOS-independent quadratic, universal transformation formula (Mb=Mg+A×M2g)(Mb=Mg+A×Mg2), the best-fit A value is 0.080 for non-rotating NSs, 0.064 for maximally rotating NSs, and 0.073 when NSs with arbitrary rotation are considered. The residual error of the transformation is ∼ …


A Unified Binary Neutron Star Merger Magnetar Model For The Chandra X-Ray Transients Cdf-S Xt1 And Xt2, Hui Sun, Ye Li, Bin-Bin Zhang, Bing Zhang, Franz E. Bauer, Yongquan Xue, Weimin Yuan Nov 2019

A Unified Binary Neutron Star Merger Magnetar Model For The Chandra X-Ray Transients Cdf-S Xt1 And Xt2, Hui Sun, Ye Li, Bin-Bin Zhang, Bing Zhang, Franz E. Bauer, Yongquan Xue, Weimin Yuan

Physics & Astronomy Faculty Research

Two bright X-ray transients were reported from the Chandra Deep Field South (CDF-S) archival data, namely CDF-S XT1 and XT2. Whereas the nature of the former is not identified, the latter was suggested as an excellent candidate for a rapidly spinning magnetar born from a binary neutron star (BNS) merger. Here we propose a unified model to interpret both transients within the framework of the BNS merger magnetar model. According to our picture, CDF-S XT2 is observed from the "free zone" where the magnetar spindown powered X-ray emission escapes freely, whereas CDF-S XT1 originates from the "trapped zone" where the …


Synchrotron Self-Compton Emission From External Shocks As The Origin Of The Sub-Tev Emission In Grb 180720b And Grb 190114c, Xiang-Yu Wang, Ruo-Yu Liu, Hai-Ming Zhang, Shao-Qiang Xi, Bing Zhang Oct 2019

Synchrotron Self-Compton Emission From External Shocks As The Origin Of The Sub-Tev Emission In Grb 180720b And Grb 190114c, Xiang-Yu Wang, Ruo-Yu Liu, Hai-Ming Zhang, Shao-Qiang Xi, Bing Zhang

Physics & Astronomy Faculty Research

Recently, very high-energy photons above 100 GeV were reported to be detected from GRB 190114C and GRB 180720B at, respectively, 100–1000 s and 10 hr after the burst. We model the available broadband data of both GRBs with the synchrotron plus synchrotron self-Compton (SSC) emission of the afterglow shocks. We find that the sub-TeV emission of GRB 180720B can be interpreted as the SSC emission from afterglow shocks expanding in a constant-density circumburst medium. The SSC emission of GRB 190114C dominates over the synchrotron component from GeV energies at ~100 s, which can explain the possible hard spectrum of the …


"Double-Tracking" Characteristics Of The Spectral Evolution Of Grb 131231a: Synchrotron Origin?, Liang Li, Jin-Jun Geng, Yan-Zhi Meng, Xue-Feng Wu, Yong-Feng Huang, Yu Wang, Rahim Moradi, Lucas Uhm, Bing Zhang Oct 2019

"Double-Tracking" Characteristics Of The Spectral Evolution Of Grb 131231a: Synchrotron Origin?, Liang Li, Jin-Jun Geng, Yan-Zhi Meng, Xue-Feng Wu, Yong-Feng Huang, Yu Wang, Rahim Moradi, Lucas Uhm, Bing Zhang

Physics & Astronomy Faculty Research

The characteristics of the spectral evolution of the prompt emission of gamma-ray bursts (GRBs), which are closely related to the radiation mechanism (synchrotron or photosphere), are still an unsolved subject. Here, by performing the detailed time-resolved spectral fitting of GRB 131231A, which has a very bright and well-defined single pulse, some interesting spectral evolution features have been found. (i) Both the low-energy spectral index α and the peak energy E p exhibit the "flux-tracking" pattern ("double-tracking" characteristics). (ii) The parameter relations, i.e., F (the energy flux)-α, F–E p, and E p–α, along with the analogous Yonetoku E p–L γ,iso relation …


An Ideal Testbed For Planet-Disk Interaction: Two Giant Protoplanets In Resonance Shaping The Pds 70 Protoplanetary Disk, Jaehan Bae, Zhaohuan Zhu, Clément Baruteau, Myriam Benisty, Cornelis P. Dullemong, Stefano Facchini, Andrea Isella, Miriam Keppler, Laura M. Pérez, Richard Teague Oct 2019

An Ideal Testbed For Planet-Disk Interaction: Two Giant Protoplanets In Resonance Shaping The Pds 70 Protoplanetary Disk, Jaehan Bae, Zhaohuan Zhu, Clément Baruteau, Myriam Benisty, Cornelis P. Dullemong, Stefano Facchini, Andrea Isella, Miriam Keppler, Laura M. Pérez, Richard Teague

Physics & Astronomy Faculty Research

While numerical simulations have been playing a key role in the studies of planet–disk interaction, testing numerical results against observations has been limited so far. With the two directly imaged protoplanets embedded in its circumstellar disk, PDS 70 offers an ideal testbed for planet–disk interaction studies. Using two-dimensional hydrodynamic simulations we show that the observed features can be well explained with the two planets in formation, providing strong evidence that previously proposed theories of planet–disk interaction are in action, including resonant migration, particle trapping, size segregation, and filtration. Our simulations suggest that the two planets are likely in 2:1 mean …


The Frb 121102 Host Is Atypical Among Nearby Fast Radio Bursts, Ye Li, Bing Zhang, Kentaro Nagamine, Jingjing Shi Oct 2019

The Frb 121102 Host Is Atypical Among Nearby Fast Radio Bursts, Ye Li, Bing Zhang, Kentaro Nagamine, Jingjing Shi

Physics & Astronomy Faculty Research

We search for host galaxy candidates of nearby fast radio bursts (FRBs), FRB 180729.J1316+55, FRB 171020, FRB 171213, FRB 180810.J1159+83, and FRB 180814.J0422+73 (the second repeating FRB). We compare the absolute magnitudes and the expected host dispersion measure DMhost of these candidates with that of the first repeating FRB, FRB 121102, as well as those of long gamma-ray bursts (LGRBs) and superluminous supernovae (SLSNe), the proposed progenitor systems of FRB 121102. We find that while the FRB 121102 host is consistent with those of LGRBs and SLSNe, the nearby FRB host candidates, at least for FRB 180729.J1316+55, FRB 171020, and …


A Global View Of The Inner Accretion And Ejection Flow Around Super Massive Black Holes, Margherita Giustini, Daniel Proga Sep 2019

A Global View Of The Inner Accretion And Ejection Flow Around Super Massive Black Holes, Margherita Giustini, Daniel Proga

Physics & Astronomy Faculty Research

Context. Understanding the physics and geometry of accretion and ejection around super massive black holes (SMBHs) is important to understand the evolution of active galactic nuclei (AGN) and therefore of the large scale structures of the Universe. Aims. We aim at providing a simple, coherent, and global view of the sub-parsec accretion and ejection flow in AGN with varying Eddington ratio, ṁ, and black hole mass, MBH. Methods. We made use of theoretical insights, results of numerical simulations, as well as UV and X-ray observations to review the inner regions of AGN by including different accretion and ejection modes, with …


Polar Alignment Of A Protoplanetary Disc Around An Eccentric Binary – Iii. Effect Of Disc Mass, Rebecca G. Martin, Stephen H. Lubow Sep 2019

Polar Alignment Of A Protoplanetary Disc Around An Eccentric Binary – Iii. Effect Of Disc Mass, Rebecca G. Martin, Stephen H. Lubow

Physics & Astronomy Faculty Research

An initially sufficiently misaligned low-mass protoplanetary disc around an eccentric binary undergoes damped nodal oscillations of tilt angle and longitude of ascending node. Dissipation causes evolution towards a stationary state of polar alignment in which the disc lies perpendicular to the binary orbital plane with angular momentum aligned to the eccentricity vector of the binary. We use hydrodynamic simulations and analytical methods to investigate how the mass of the disc affects this process. The simulations suggest that a disc with non-zero mass settles into a stationary state in the frame of the binary, the generalized polar state, at somewhat lower …


Photoionization Calculations Of The Radiation Force Due To Spectral Lines In Agns, Randall C. Dannen, Daniel Proga, Timothy R. Kallman, Tim Waters Sep 2019

Photoionization Calculations Of The Radiation Force Due To Spectral Lines In Agns, Randall C. Dannen, Daniel Proga, Timothy R. Kallman, Tim Waters

Physics & Astronomy Faculty Research

One of the main mechanisms that could drive mass outflows in active galactic nuclei (AGNs) is radiation pressure due to spectral lines. Although straightforward to understand, the actual magnitude of the radiation force is challenging to compute because the force depends on the physical conditions in the gas, as well as the strength, spectral energy distribution (SED), and geometry of the radiation field. We present results from our photoionization and radiation transfer calculations of the force multiplier, M(ξ, t), using the same radiation field to compute the gas photoionization and thermal balance. We assume low gas density (n = 104 …