Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Soil Science

2017

Edith Cowan University

Tidal marshes

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Carbon Sequestration By Australian Tidal Marshes, Peter I. Macreadie, Q. R. Oliver, J. J. Kelleway, Oscar Serrano, P. E. Carnell, C. J. Ewers Lewis, T. B. Atwood, J. Sanderman, J. Baldock, R. M. Connolly, C. M. Duarte, Paul Lavery, A. Steven, C. E, Lovelock Mar 2017

Carbon Sequestration By Australian Tidal Marshes, Peter I. Macreadie, Q. R. Oliver, J. J. Kelleway, Oscar Serrano, P. E. Carnell, C. J. Ewers Lewis, T. B. Atwood, J. Sanderman, J. Baldock, R. M. Connolly, C. M. Duarte, Paul Lavery, A. Steven, C. E, Lovelock

Research outputs 2014 to 2021

Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha − 1 (range 14 – 963 Mg OC ha − 1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha − 1 yr − 1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC …