Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics

Physics Faculty Publications

Scattering amplitudes

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Evolution Of Efimov States, Sebastian M. Dawid, Md Habib E. Islam, Raúl A. Briceño, Andrew W. Jackura Jan 2024

Evolution Of Efimov States, Sebastian M. Dawid, Md Habib E. Islam, Raúl A. Briceño, Andrew W. Jackura

Physics Faculty Publications

The Efimov phenomenon manifests itself as an emergent discrete scaling symmetry in the quantum three-body problem. In the unitarity limit, it leads to an infinite tower of three-body bound states with energies forming a geometric sequence. In this work, we study the evolution of these so-called Efimov states using relativistic scattering theory. We identify them as poles of the three-particle 𝑆 matrix in the complex energy plane, and we study how they transform from virtual states through bound states to resonances when we change the interaction strength. We dial the scattering parameters toward the unitarity limit and observe the emergence …


Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty Jan 2021

Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty

Physics Faculty Publications

We present a simple scheme for solving relativistic integral equations for the partial-wave projected three-body amplitudes. Our techniques are used to solve a problem of three scalar particles with a formation of a S-wave two-body bound state. We rewrite the problem in a form suitable for numerical solution and then explore three solving strategies. In particular, we discuss different ways of incorporating the bound-state pole contribution in the integral equations. All of them lead to agreement with previous results obtained using finite-volume spectra of the same theory, providing further evidence of the validity of the existing finite- and infinite-volume formalism …


Role Of Boundary Conditions In Quantum Computations Of Scattering Observables, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu Jan 2021

Role Of Boundary Conditions In Quantum Computations Of Scattering Observables, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu

Physics Faculty Publications

Quantum computing may offer the opportunity to simulate strongly interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Briceno et al. [Phys. Rev. D 101, 014509 (2020)], we estimate the volume effects for various …


Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen Oct 2019

Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen

Physics Faculty Publications

In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, …


Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama Jan 2019

Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama

Physics Faculty Publications

In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that are experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.