Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Synthesis Of Block Copolymer Additives For Examining Phase Morphology And Improving Mechanical Properties Of Thermoplastics Elastomers., Bishal Upadhyay Dec 2023

Synthesis Of Block Copolymer Additives For Examining Phase Morphology And Improving Mechanical Properties Of Thermoplastics Elastomers., Bishal Upadhyay

Masters Theses

Polystyrene-block-poly(1,4-butaidene)-block-polystyrene (PS-PB-PS) triblock copolymers are one of the most widely studied thermoplastic elastomers (TPEs) due to their ease of synthesis, non-polar nature, and commercial applicability. Like many block copolymers, incompatibility between PS and PB causes these TPEs to undergo microphase segregation. Many studies have examined the mechanical properties of blends of TPEs and PS homopolymer additives. However, there have been few studies focused on understanding the morphology and mechanical properties of blends of TPEs and copolymer additives with different architectures. Herein, I describe the synthesis of linear and graft copolymer additives based on the random copolymers poly(methyl methacrylate-random-cyclohexyl methacrylate) (PrC). …


The Influence Of Ion-Ion Correlations On Conductivity In Concentrated Ionic Systems, Md Dipu Ahmed Dec 2023

The Influence Of Ion-Ion Correlations On Conductivity In Concentrated Ionic Systems, Md Dipu Ahmed

Masters Theses

This study delves into the fascinating realm of concentrated ionic systems, such as ionic liquids, superionic materials, organic ionic plastic crystals, and polyelectrolytes, which hold immense potential for energy storage applications. The focus is on understanding the intricate role of ionic correlations in shaping their ionic conductivity behavior. These correlations can either boost or impede conductivity, yet their underlying mechanisms remain elusive. Through extensive investigation of various materials, including ionic liquids with differing anionic masses, pure organic ionic plastic crystals, and doped systems, this research employs advanced techniques like dielectric spectroscopy and innovative momentum conservation models to quantify these correlations. …


Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe Nov 2023

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe

Masters Theses

Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities.

Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this …


Redox-Active Polymerization Catalysts And Their Applications, Nicholas M. Shawver Aug 2023

Redox-Active Polymerization Catalysts And Their Applications, Nicholas M. Shawver

Masters Theses

Traditional catalyst systems are reliable means to produce polymers with well-defined architectures and thermomechanical properties; however, they are often limited by a narrow monomer scope and their ability access few, if any, advanced polymer architectures. To address this limitation, a new class of catalysts have recently emerged that feature redox-active moieties that may access advanced architectures through catalyst electronic modulation that arises from redox events occurring on the ligand scaffold or at the active metal center itself. For example, researchers have explored the ability of redox-active catalysts to impart “on-off” kinetic control during ring-opening polymerizations and their ability to access …


Understanding The Polymerization Of Ethyl Cyanoacrylate In The Superglue Fuming Of Latent Prints To Optimize Print Retrieval, Leondra Shawntae Lawson May 2023

Understanding The Polymerization Of Ethyl Cyanoacrylate In The Superglue Fuming Of Latent Prints To Optimize Print Retrieval, Leondra Shawntae Lawson

Masters Theses

The cyanoacrylate fuming method (CFM) is a widespread process used in forensics to make latent prints visible for detection, acquisition, and analysis. CFM is governed by the reaction of ethyl cyanoacrylate (ECA) with biological components in fingerprints, which serve as initiators for this anionic polymerization. CFM is not a well-controlled polymerization and there are different outcomes that may result from lower temperature, one of which fits the generalization of creating more ion-pair initiators. Another effect could be minimizing termination through suppressing side reactions. Alternatively, when paired with humidity, lower temperatures may cause surface condensation, decreasing the quality of the print. …