Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Multi-Scale Assembly Methodologies Of Poly(3-Hexylthiophene) Derivative Systems For Enhanced Optoelectronic Anisotropy, David William Bilger Aug 2017

Multi-Scale Assembly Methodologies Of Poly(3-Hexylthiophene) Derivative Systems For Enhanced Optoelectronic Anisotropy, David William Bilger

Master's Theses

Conjugated polymers represent a class of semi-conducting materials with numerous applications in optoelectronic devices, including organic light-emitting diodes, field-effect transistors, and photovoltaics. Because of the numerous advantages of macromolecular systems, including solution processing and mechanical flexibility, conjugated polymers have become a burgeoning field of research with the hopes of producing cost-effective solution-based electronics. Importantly, optoelectronic device performance is heavily influenced by conjugated polymer backbone orientation and overall thin film morphology. As such, the processing conditions of these systems are important to the construction of high- performance optoelectronics. Polythiophenes are model conjugated polymers that have been studied extensively in halogenated organic …


Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin Aug 2015

Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin

Master's Theses

Organic thin films can be readily mass-produced through solution-based fabrication methods including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allows for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed and this information is difficult to extract through conventional bulk measurements.

Organic thin films can be readily …


Nanoparticles And Polymer Crystallization Kinetics In Hybrid Electronic Devices, Taylor William Wagner Dec 2013

Nanoparticles And Polymer Crystallization Kinetics In Hybrid Electronic Devices, Taylor William Wagner

Master's Theses

Conjugated semi-conducting polymers have become well known for their potential applications in hybrid electronic devices like solar cells, LEDs, and organic displays. These hybrid devices also contain inorganic nanoparticles, which complement the polymer when they are combined into the same layer. Control over the conformation and crystallinity of the polymer is critical for device performance, yet not much is known about the effect that these nanoparticles have on the polymer. Here, zinc oxide nanowire was surface modified with mono-substituted-carboxylic acid tetraphenylporphyrin and dodecanethiol, and introduced to poly(3-hexyl thiophene) in solution. The electron transfer, kinetics, and thermodynamics of this system were …


Controlling Nanoparticle Dispersion For Nanoscopic Self-Assembly, Nathan S. Starkweather Dec 2012

Controlling Nanoparticle Dispersion For Nanoscopic Self-Assembly, Nathan S. Starkweather

Master's Theses

Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. …