Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

On The Dynamic Generation Of Megagauss-Level Magnetic Fields On 100-Ns Timescales To Stabilize And Magnetize Pulsed-Power-Driven Liner Implosions, Gabriel A. Shipley Apr 2021

On The Dynamic Generation Of Megagauss-Level Magnetic Fields On 100-Ns Timescales To Stabilize And Magnetize Pulsed-Power-Driven Liner Implosions, Gabriel A. Shipley

Electrical and Computer Engineering ETDs

This dissertation presents analysis of experiments and simulations executed to develop the auto-magnetizing liner concept (AutoMag) for use as an alternative premagnetization mechanism for MagLIF. Tests of each stage of AutoMag (magnetization, dielectric breakdown, and implosion) were executed on the Mykonos accelerator and the Z accelerator. Experiments demonstrate strong peak axial magnetic field production (20 – 150 T), dielectric breakdown initiation that depends on global induced electric field across the target, and a level of cylindrical implosion uniformity high enough to be useful for prospective fusion-fuel-filled (auto-magnetized MagLIF) experiments.

This dissertation also presents detailed simulations of the Solid Liner Dynamic …


Experimental Testing Of A 3d-Printed Metamaterial Slow Wave Structure For High Power Microwave Generation, Antonio B. De Alleluia Nov 2019

Experimental Testing Of A 3d-Printed Metamaterial Slow Wave Structure For High Power Microwave Generation, Antonio B. De Alleluia

Electrical and Computer Engineering ETDs

A metamaterial (MTM) high power microwave (HPM) vacuum electron device (VED) was developed using 3D printing technology. The specific geometric pattern of the source can produce both negative permittivity and permeability to interact with a relativistic electron beam. The electron beam is generated using a pulsed electron accelerator with a maximum energy of 700 keV and lasting approximately 16 ns. The design of this novel VED consists of a circular waveguide loaded with complementary split-ring resonators in a linear periodic arrangement in which the relativistic beam travels guided by a magnetic field. The electrons interact with the MTM producing electromagnetic …


Experimental Investigation Of Plasma Dynamics In Jets And Bubbles Using A Compact Coaxial Plasma Gun In A Background Magnetized Plasma, Yue Zhang Nov 2016

Experimental Investigation Of Plasma Dynamics In Jets And Bubbles Using A Compact Coaxial Plasma Gun In A Background Magnetized Plasma, Yue Zhang

Electrical and Computer Engineering ETDs

Numerous solar and astrophysical observations of jet- and bubble-like plasma structures exhibit morphological similarities, suggesting that there may be common plasma physics at work in the formation and evolution processes of these structures at different system scales. The ideal magnetohydrodynamics (MHD) provide the necessary theoretical basis for employing laboratory experiments to investigate key physical processes in nonlinear astrophysical and solar systems, especially when magnetic fields are present.

A coaxial magnetized plasma gun has been designed, installed, and operated in the HelCat linear device at the University of New Mexico. In Region I, a current-driven plasma jet is formed. The plasma …