Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Thin film

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 40

Full-Text Articles in Physical Sciences and Mathematics

Interplay Of Forces In Impinging Jet Flow And Circular Hydraulic Jump, Abdelkader Baayoun Sep 2023

Interplay Of Forces In Impinging Jet Flow And Circular Hydraulic Jump, Abdelkader Baayoun

Electronic Thesis and Dissertation Repository

The circular liquid jet impingement with subsequent hydraulic jump formation is studied theoretically using boundary-layer and thin-film approaches. Three different scenarios are tackled, namely, an accelerated Newtonian jet impinging on a stationary disk, a steady Newtonian jet impinging on a rotating disk, and a steady viscoelastic liquid jet impinging on a stationary disk. Accordingly, the effects of jet acceleration, gravity, centrifugal forces, and fluid elasticity on the flow behaviour and the jump are examined. The results are validated against numerical simulation and existing measurements. The findings show that the thickness of the boundary layer developing near impingement diminishes with jet …


Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei Oct 2022

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Emergent Phenomenon In Jeff=1/2 Iridate, Junyi Yang May 2022

Emergent Phenomenon In Jeff=1/2 Iridate, Junyi Yang

Doctoral Dissertations

Recent work on various quantum materials has led to fruitful result including unconventional magnetic states, topological properties, and exotic emergent phenomenon. High Tc superconductivity is one of the prominent properties discovered in quantum materials like strong correlated systems. Though the efforts on understanding this exotic behavior have lasted for years, the mechanism remains elusive owing to the many-body nature of the system and the research scope limitation within cuprates. Recent unravel of Jeff=1/2 state in the iridate square lattice offers alternative to study the complicated many body physics and potentially achieve high Tc superconductivity. In addition, …


Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni Apr 2021

Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni

Chemistry Faculty Publications

The direct detection of 5-MeV protons by flexible organic detectors based on thin films is here demonstrated. The organic devices act as a solid-state detector, in which the energy released by the protons within the active layer of the sensor is converted into an electrical current. These sensors can quantitatively and reliably measure the dose of protons impinging on the sensor both in real time and in integration mode. This study shows how to detect and exploit the energy absorbed both by the organic semiconducting layer and by the plastic substrate, allowing to extrapolate information on the present and past …


Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar Jan 2021

Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar

Dissertations, Master's Theses and Master's Reports

The objective of this work is to identify the fundamental mechanism of dropwise condensation on a smooth solid surface by probing the solid-vapor interface during phase-change to evaluate the existence and structure of the thin film and the initial nucleus that develop during condensation. In this work, an automated Surface Plasmon Resonance imaging (SPRi) instrument with the ability to perform imaging in intensity modulation and angular modulation is developed. The SPRi instrument is used to probe (in three dimensions) the adsorbed film that forms on the substrate during dropwise condensation. SPRi with a lateral resolution of ~ 4-10 μm, thickness …


Effect Of Mixing Ratio Of (Sno2)1-X(In2o3)X Thin Film On Gas Sensitivity, Mohammed Abdulhur Kadhim Dr., Amer Abbas Ramadhan Dr., Mohammed Oudah Salman Al-Gburi Dr, Ghiadaa J. Habi, Noora J. Hentawe Mar 2020

Effect Of Mixing Ratio Of (Sno2)1-X(In2o3)X Thin Film On Gas Sensitivity, Mohammed Abdulhur Kadhim Dr., Amer Abbas Ramadhan Dr., Mohammed Oudah Salman Al-Gburi Dr, Ghiadaa J. Habi, Noora J. Hentawe

Karbala International Journal of Modern Science

In this work, Nitrogen dioxide gas sensorwas manufactured from SnO2 and (SnO2)1-x(In2O3)x at different atomic ratios (x=0.05, 0.1 and 0.15) using pulsed laser deposition technique. The effect of the preparation ratio on structural properties, surface topography, optical and electrical characteristics and gas sensor efficiency were studied. The x-ray diffraction measurements showed polycrystalline structures for all samples and their crystallite size decreases with increasing the doping ratio. The AFM measurement illustrates spherical SnO2 shapes converted to filament-like shapes at x=0.1, and that the average particle diameter decreased, while the RMS …


Atomic Layer Deposition Of Zirconium Oxide Thin Film On An Optical Fiber Forcladding Light Strippers, Ali̇ Karatutlu Jan 2020

Atomic Layer Deposition Of Zirconium Oxide Thin Film On An Optical Fiber Forcladding Light Strippers, Ali̇ Karatutlu

Turkish Journal of Physics

Cladding light strippers are essential components in high-power fiber lasers used for removal of unwanted cladding light that can distort the beam quality or even damage the whole fiber laser system. In this study, an Atomic Layer Deposition system was used for the first time to prepare the cladding light stripper devices using a 40 nm thick zirconia layer grown on optical fiber. The thickness of the zirconia coating was confirmed using the Scanning Electron Microscopy (SEM) and the Ellipsometry techniques. The elemental analysis was also performed using the wavelength dispersive X-ray spectroscopy technique. The Raman spectroscopy and XRD data …


Growth And Characterization Of Organic Ferroelectric And Magnetic Thin Films, Xuanyuan Jiang Dec 2019

Growth And Characterization Of Organic Ferroelectric And Magnetic Thin Films, Xuanyuan Jiang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Compared to inorganic materials, organic materials are environmentally friendly, flexible, and often with low cost. Inspired by these advantages, organic materials-based electronics have been intensively studied for comparable or better functionalities to inorganic electronics.

This dissertation mainly focuses on the growth and characterizations of organic ferroelectrics and magnetic thin films. For organic ferroelectrics, we investigate the growth and ferroelectric measurements of thin film croconic acid (CA), a proton-transfer molecular ferroelectric (FE) material with a large spontaneous polarization and a small coercive field, as well as the origin of ferroelectricity in CA in terms of the photostriction effect, including the discovery …


Optimization Of Deposition Parameters For Thin Film Lithium Phosphorus Oxynitride (Lipon), B. Uzakbaiuly, A. Mukanova, I. Kurmabbayeva, Z. B. Bakenov Jun 2019

Optimization Of Deposition Parameters For Thin Film Lithium Phosphorus Oxynitride (Lipon), B. Uzakbaiuly, A. Mukanova, I. Kurmabbayeva, Z. B. Bakenov

Eurasian Journal of Physics and Functional Materials

Thin film of lithium phosphorus oxynitride (LIPON) was successfully deposited by radio frequency (RF) magnetron sputtering technique using a Li3PO4 target. The optimal deposition parameters were determined for the thin films with the highest target-substrate distance. Characterization of deposited film was carried out by AFM, FTIR and Raman spectroscopy, which showed incorporation of nitrogen into the film as both doubly, Nd , and possibly triply, Nt, coordinated form. The ac impedance spectroscopy measurements revealed that the highest ionic conductivity of 1.1 µScm-1 was achieved at room temperature for the samples prepared at the …


Y2O3 Optical Constants Between 5 Nm And 50 Nm, Joseph B. Muhlestein, Benjamin D. Smith, Margaret Miles, Stephanie M. Thomas, Anthony Willey, David D. Allred, R. Steven Turley Jan 2019

Y2O3 Optical Constants Between 5 Nm And 50 Nm, Joseph B. Muhlestein, Benjamin D. Smith, Margaret Miles, Stephanie M. Thomas, Anthony Willey, David D. Allred, R. Steven Turley

Faculty Publications

We report optical constants of e-beam evaporated yttrium oxide Y2O3 thin films as determined from angle-dependent reflectance measurements at wavelengths from 5 to 50 nm. Samples were measured using synchrotron radiation at the Advanced Light Source. The experimental reflectance data were fit to obtain values for the index of refraction and thin film roughness. We compare our computed constants with those of previous researchers and those computed using the independent atom approximation from the CXRO website. We found that the index of refraction near 36 nm is much lower than previous data from Tomiki as reported by …


Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs Jul 2018

Molecular Assembly Of Monolayer-Protected Gold Nanoparticles And Their Chemical, Thermal, And Ultrasonic Stabilities, Steven Ray Isaacs

Masters Theses & Specialist Projects

Gold monolayer-protected nanoclusters (MPCs) with average diameters of 1-5 nm protected by alkane- and arenethiolates were synthesized. Mixed-monolayer protected nanoparticles (MMPCs) were prepared by functionalizing hexanethiolate-protected MPCs with either 11-mercaptoundecanoic acid (MUA-MMPC), 11-mercaptoundecanol (MUO-MMPC), or 4-aminothiophenol (ATP-MMPC) using ligand place exchange. Presentation of various chemical reagents such as nucleophile, acid, or base and change in physical environment through ultrasonic and thermal irradiation resulted in changes to particles and their physical properties. Thermogravimetric analysis (TGA) was used to measure maximum temperature of the derivated thermogravimetric peaks (Tmax,DTG) as a means of comparing temperature dependence of mass loss. The absorption spectrum within …


Optimization Of Cuinxga1-Xse2 Solar Cells With Post Selenization, Zehra Cevher May 2018

Optimization Of Cuinxga1-Xse2 Solar Cells With Post Selenization, Zehra Cevher

Dissertations, Theses, and Capstone Projects

The chalcopyrite semiconductor CuInxGa1-xSe2 is considered as the most promising material for high efficiency thin film solar cells due to its exceptional radiation stability, tunable direct bandgap, high light absorption coefficient and low cost preparation methods. In this thesis, we present the systematic investigation of the deposition conditions to optimize the CuInxGa1-xSe2 device performance using the two-step deposition method. Further, we utilized nonlinear optical methods to investigate the deposition parameters to optimize the bulk and interface properties of photovoltaic devices.

First, we investigated the deposition parameters to optimize the structural, …


Effect Of Al And Ga Codoping On The Morphological, Electronic, And Opticalproperties Of Zno Transparent Conductive Thin Films Prepared By Spray Pyrolysistechnique, Worapot Sripianem, Ratchatee Techapiesancharoenkij Jan 2018

Effect Of Al And Ga Codoping On The Morphological, Electronic, And Opticalproperties Of Zno Transparent Conductive Thin Films Prepared By Spray Pyrolysistechnique, Worapot Sripianem, Ratchatee Techapiesancharoenkij

Turkish Journal of Physics

Codoping a semiconductor thin film with two or more dopants is a feasible technique to improve the electrical properties of the thin film. In this work, we studied the codoping of Al and Ga n-type impurities in a ZnO film (AGZO) deposited on a glass substrate by the spray pyrolysis method. The total doping concentration, [Al + Ga]/[Al + Ga + Zn], was 5 at.% with varying Al:Ga codoping proportions of 0:5, 1.25:3.75, 2.5:2.5, 3.75:1.25, and 5:0 at.%. The effect of Al/Ga codoping on the structural, texture, morphological, optical, and electrical properties of the AGZO films were investigated using X-ray …


Reducing The Size Sale Of The Block Copolymer Microdomains And Morphology Study Of Brush Block Copolymers Containing Homopolymer, Gajin Jeong Mar 2017

Reducing The Size Sale Of The Block Copolymer Microdomains And Morphology Study Of Brush Block Copolymers Containing Homopolymer, Gajin Jeong

Doctoral Dissertations

Block copolymers (BCPs), due to their ability to self-assemble into periodic nanoscale morphologies, have been extensively studied over the past few decades. The thermodynamic parameters governing self-assembly of BCPs generally leads to periodic morphologies with characteristic length scales ranging from 10 to 100 nm. Several applications have been demonstrated utilizing BCPs as a template for the fabrication of nanostructured materials. Fabricating structures beyond the 10-100 nm range, remains a challenge and constitutes one of the goals of the proposed research. This dissertation is divided into two parts. The first focuses on the sub 10 nm length scale, when by chemically …


Thermal Conductivities Of Organic Semiconductors, Yulong Yao Jan 2017

Thermal Conductivities Of Organic Semiconductors, Yulong Yao

Theses and Dissertations--Physics and Astronomy

Organic semiconductors have gained a lot of interest due to their ease of processing, low-cost and inherent mechanical flexibility. Although most of the research has been on their electronic and optical properties, knowledge of the thermal properties is important in the design of electronic devices as well. Our group has used ac-calorimetric techniques to measure both in-plane and transverse thermal conductivities of a variety of organic semiconductors including small-molecule crystals and polymer blends. For layered crystals composed of molecules with planar backbones and silylethynyl (or germylethynyl) sidegroups projecting between the layers, very high interplanar thermal conductivities have been observed, presumably …


Dissociative Excitation Of H2 In An Rf Plasma, John Carlson May 2016

Dissociative Excitation Of H2 In An Rf Plasma, John Carlson

Macalester Journal of Physics and Astronomy

Plasma-enhanced chemical vapor deposition is a widely used method for depositing thin films. In order to optimize the properties of the films, it is important to understand the plasma processes that occur during film growth. In this research we use optical emission spectroscopy in order to measure the spectral emission lines of a plasma produced with hydrogen gas. In conjunction with other measurements and modeling, these measurements can provide insight to the electron energy distribution of the plasma.


Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam Dec 2015

Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam

Guru Subramanyam

Vanadium dioxide (VO2) is a unique phase change material (PCM) that possesses a metal-to-insulator transition property. Pristine VO2 has a negative temperature coefficient of resistance, and it undergoes an insulator-to-metal phase change at a transition temperature of 68°C. Such a property makes the VO2 thin-film-based variable resistor (varistor) a good candidate in reconfigurable electronics to be integrated with different RF devices such as inductors, varactors, and antennas. Series single-pole single-throw (SPST) switches with integrated VO2 thin films were designed, fabricated, and tested. The overall size of the device is 380 μm × 600 μm. The SPST switches were fabricated on …


Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam Sep 2015

Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam

Electrical and Computer Engineering Faculty Publications

Vanadium dioxide (VO2) is a unique phase change material (PCM) that possesses a metal-to-insulator transition property. Pristine VO2 has a negative temperature coefficient of resistance, and it undergoes an insulator-to-metal phase change at a transition temperature of 68°C. Such a property makes the VO2 thin-film-based variable resistor (varistor) a good candidate in reconfigurable electronics to be integrated with different RF devices such as inductors, varactors, and antennas. Series single-pole single-throw (SPST) switches with integrated VO2 thin films were designed, fabricated, and tested. The overall size of the device is 380 μm × 600 μm. The SPST switches were fabricated on …


Magnetic Transport Properties Of Oriented Soft, Hard And Exchange-Coupled Magnetic Thin Films And Au25(Sc6H13)18 Spherical Nanocluster, Rukshan M. Thantirige Aug 2015

Magnetic Transport Properties Of Oriented Soft, Hard And Exchange-Coupled Magnetic Thin Films And Au25(Sc6H13)18 Spherical Nanocluster, Rukshan M. Thantirige

Doctoral Dissertations

This study was conducted with the aim of improving permanent magnetic properties of existing materials and exploring non-conventional ferromagnetic properties of gold-based nanoclusters. The first chapter of this dissertation gives an introduction to relevant fundamental concepts and proceeding chapters present findings of three projects. In the first project, shape anisotropy induced permanent magnetism in oriented magnetic thin films was investigated. Roll-to-roll nanoimprinting, a high-throughput fabrication method was utilized to fabricate densely packed Fe nanostripe-based magnetic thin films that exhibit large in-plane uniaxial anisotropy and nearly square hysteresis loops at room temperature. (BH)max exceeds 3 MGOe for samples of intermediate …


Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. Long, O. Famodu, M. Murakami, Jason Hattrick-Simpers, G. Rubloff, M. Stukowski, K. Rajan Mar 2015

Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. Long, O. Famodu, M. Murakami, Jason Hattrick-Simpers, G. Rubloff, M. Stukowski, K. Rajan

Jason R. Hattrick-Simpers

We discuss techniques for managing and visualizing x-ray diffraction spectrum data for thin film composition spreads which map large fractions of ternary compositional phase diagrams. An in-house x-ray microdiffractometer is used to obtain spectra from over 500 different compositions on an individual spread. The MATLAB software is used to quickly organize the data and create various plots from which one can quickly grasp different information regarding structural and phase changes across the composition spreads. Such exercises are valuable in rapidly assessing the “overall” picture of the structural evolution across phase diagrams before focusing in on specific composition regions for detailed …


The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason Hattrick-Simpers, D. Banerjee, Y. Liu, Z. Wang, J. Liu, S. Lofland, D. Josell, I. Takeuchi Mar 2015

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason Hattrick-Simpers, D. Banerjee, Y. Liu, Z. Wang, J. Liu, S. Lofland, D. Josell, I. Takeuchi

Jason R. Hattrick-Simpers

The effect of the crystallinity and the grain texturing of CoPt hard layers on exchange coupled Fe/CoPt soft/hard magnetic systems was studied using gradient thickness multilayer thin films. We have studied the hard layer structures by transmission electron microscopy and x-ray diffraction, and characterized the exchange coupling interaction through magnetization loops obtained by the magneto-optical Kerr effect measurement. We found that exchange coupling strongly depends on the crystalline characteristics of the CoPt hard layer. There is correlation between the mixture of different grain orientations of the CoPt hard layer and coupling efficiency. In particular, interlayer coupling is enhanced when there …


Rapid Structural Mapping Of Ternary Metallic Alloy Systems Using The Combinatorial Approach And Cluster Analysis, C. Long, Jason Hattrick-Simpers, M. Murakami, R. Srivastava, I. Takeuchi, V. Karen, X. Li Mar 2015

Rapid Structural Mapping Of Ternary Metallic Alloy Systems Using The Combinatorial Approach And Cluster Analysis, C. Long, Jason Hattrick-Simpers, M. Murakami, R. Srivastava, I. Takeuchi, V. Karen, X. Li

Jason R. Hattrick-Simpers

We are developing a procedure for the quick identification of structural phases in thin film composition spread experiments which map large fractions of compositional phase diagrams of ternary metallic alloy systems. An in-house scanning x-ray microdiffractometer is used to obtain x-ray spectra from 273 different compositions on a single composition spread library. A cluster analysissoftware is then used to sort the spectra into groups in order to rapidly discover the distribution of phases on the ternary diagram. The most representative pattern of each group is then compared to a database of known structures to identify known phases. Using this method, …


Probing The Size Dependent Chemical Properties Of Metals In Reduced Dimension, Xiangshi Yin Aug 2014

Probing The Size Dependent Chemical Properties Of Metals In Reduced Dimension, Xiangshi Yin

Doctoral Dissertations

Heterogeneously catalyzed reactions typically start with adsorption and dissociation of reactant molecules on the surface of a solid catalyst. In many instances, this is followed by surface diffusion of the adsorbed species, chemical reaction, and removal of the product molecule. According to the Sabatier principle, optimal catalytic performance requires that the bonding between the adsorbate molecule and the surface should neither be too strong nor too weak. This bonding strength is directly related to the catalyst’s surface electronic structure and hence, electronic structure modification would seem a promising approach for tuning catalytic activity.

There have been many studies along this …


Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng Aug 2014

Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng

Doctoral Dissertations

The surface plasmon is a coherent charge density oscillation localized at a metal surface. It can couple with light and the resulting plasmon-polariton hybrid mode is confined to volumes that are much smaller than the classical diffraction limit of light. Nano-plasmonics is a rapidly evolving field where light manipulation at the nanoscale may lead to novel applications. However, as the size of plasmonic devices approaches the quantum-size regime, the macroscopic picture of plasmon may no longer be valid. To elucidate the influence of the discretization of the single particle spectrum on the collective plasmon response, we performed a systematic study …


Kinetics Of Solid Phase Crystallization Of A-Ge Thin Films, John D. Graham May 2014

Kinetics Of Solid Phase Crystallization Of A-Ge Thin Films, John D. Graham

Macalester Journal of Physics and Astronomy

A method was developed to investigate the solid-phase crystallization (SPC) reaction undergone by germanium thin films. Amorphous films were grown by the radio-frequency (RF) magnetron sputtering and then annealed for a maximum of 6 hours at two temperatures: 446°C and 460°C. Crystallinity was measured by resistivity measurements, as well as crystal peak height and area taken from X-ray diffractometer (XRD) data. Initial data shows qualitative agreement with a nucleation-growth model for the observed kinetic process. However, observed peak narrowing phenomena suggests a comprehensive model of XRD measurements of polycrystalline thin films is needed for a rigorous interpretation of the results.


Deposition And Characterization Of Pbo--Pbs Multilayer Thin Films By Solution Growth Technique, Dominic Eya Jan 2014

Deposition And Characterization Of Pbo--Pbs Multilayer Thin Films By Solution Growth Technique, Dominic Eya

Turkish Journal of Physics

PbO-PbS thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. PbO thin films were deposited from the solution of lead nitrate (Pb(NO_3)_2) and sodium hydroxide (NaOH). Ethylenediaminetetraacetate (EDTA) served as the complexing agent. Some of the PbO films were used as substrate for the deposition of PbS. The PbS was deposited from alkaline solution of lead nitrate and thioacetamide. Triethanolamine was used as the complexing agent. Some of the films were subjected to thermal treatment after deposition. Energy dispersive X-ray fluorescence analysis confirmed the presence of Pb and S in the PbS thin films, while …


A Lateral Field Excited Thin Film Bulk Acoustic Wave Sensor, Michael R. Fitzgerald Aug 2013

A Lateral Field Excited Thin Film Bulk Acoustic Wave Sensor, Michael R. Fitzgerald

Honors College

Medical and environmental needs have served as a catalyst for the development of sensors that can probe the molecular level and below. This study addresses the practicality of highly sensitive aluminum nitride (AlN) thin film bulk acoustic wave resonators (FBARs) as sensors from theoretical and experimental points of view. Theoretically, COMSOL Multiphysics simulations predict that lateral field excitation of AlN produces an electric field perpendicular to the c-axis, with the electrical energy density being concentrated in the active area of the sensor. An analysis of the piezoelectrically stiffened Christoffel equation shows that the shear mode can be excited by an …


Growth And Characterization Of Hexagonal Lu-Fe-O Multiferroic Thin Films, Wenbin Wang Dec 2012

Growth And Characterization Of Hexagonal Lu-Fe-O Multiferroic Thin Films, Wenbin Wang

Doctoral Dissertations

In the quest for new types of information processing and storage, complex oxides stand out as one of the most promising material classes. The multiple functionalities of complex oxides naturally arise from the delicate energy balance between the various forms of order (structural, electronic, magnetic). In particular, multiferroic and magnetoelectric oxides which simultaneously exhibit more than one type of ferroic orders have many advantages over existing materials. Widespread practical applications will require a single-phase multiferroic material with a transition temperature that lies considerably above room temperature, large electric and magnetic polarizations, and strong coupling between ferroic orders.

Recently, multiferroic LuFe …


Highly Charged Ion Interactions With Ultrathin Dielectric Films, Russell Lake May 2012

Highly Charged Ion Interactions With Ultrathin Dielectric Films, Russell Lake

All Dissertations

The excitations occurring at a solid surface due to slow highly charged ion (HCI) impacts are interesting from the perspective of fundamental processes in atomic collisions and materials science. This thesis focuses on two questions: 1) How much HCI potential energy deposition is required to form permanent surface modifications?, 2) How does the presence of a thin dielectric surface film change the classical over-the-barrier picture for neutralization above a clean metal?
I describe a measurement of craters in thin dielectric films formed by XeQ+ (26 ≤ Q ≤ 44) projectiles. Tunnel junction devices with ion-irradiated barriers were used to amplify …


Epitaxial Growth, Characterization And Application Of Novel Wide Bandgap Oxide Semiconductors, Jeremy Mares Jan 2010

Epitaxial Growth, Characterization And Application Of Novel Wide Bandgap Oxide Semiconductors, Jeremy Mares

Electronic Theses and Dissertations

In this work, a body of knowledge is presented which pertains to the growth, characterization and exploitation of high quality, novel II-IV oxide epitaxial films and structures grown by plasma-assisted molecular beam epitaxy. The two compounds of primary interest within this research are the ternary films NixMg1-xO and ZnxMg1-xO and the investigation focuses predominantly on the realization, assessment and implementation of these two oxides as optoelectronic materials. The functioning hypothesis for this largely experimental effort has been that these cubic ternary oxides can be exploited - and possibly even juxtaposed - to realize novel wide band gap optoelectronic technologies. The …