Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Temperature

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 85

Full-Text Articles in Physical Sciences and Mathematics

Temperature Influence On The Optical Properties, Attenuation Coefficient, And Total Molecular Cross Section Of Dhunge Dhara Drinking Water, Saddam Husain Dhobi, Bibek Koirala, Kishori Yadav, Jeevan Jyoti Nakarmi, Suresh Prasad Gupta, Santosh Kumar Das, Arun Kumar Shah, Kuldip Paudel, Kushal Dahal, Ram Lal Sah Dec 2022

Temperature Influence On The Optical Properties, Attenuation Coefficient, And Total Molecular Cross Section Of Dhunge Dhara Drinking Water, Saddam Husain Dhobi, Bibek Koirala, Kishori Yadav, Jeevan Jyoti Nakarmi, Suresh Prasad Gupta, Santosh Kumar Das, Arun Kumar Shah, Kuldip Paudel, Kushal Dahal, Ram Lal Sah

Makara Journal of Science

This work aims to measure the different parameters of Dhunge Dhara water (DDW) such as absorbance, transmittance, mass attenuation coefficient (MAC), and molecular cross section (MCS) and experimentally compare the obtained values with those of pure water (PW) at various temperatures (5 °C to 90 °C) using a theremino spectrometer. Observation shows that the parameters vary with temperature and wavelength. The transmittance of DDW ranges from 18% to 85% and absorbance of the same ranges from 0.09 Au to 0.7 Au. Meanwhile, the transmittance of PW ranges from 40% to 98% and the absorbance of the same ranges from 0.09 …


The Variability Of The Saturation Ratio In Clouds, Jesse C. Anderson Jan 2022

The Variability Of The Saturation Ratio In Clouds, Jesse C. Anderson

Dissertations, Master's Theses and Master's Reports

The saturation ratio determines the growth of cloud droplets by condensation and activation of aerosol particles. In a uniform environment, the interactions between the saturation ratio and cloud droplets are well understood. However, the presence of turbulent mixing causes spatial and temporal variability in the temperature, water vapor and the saturation ratio. When applied to a cloud, the variability in S has been shown to broaden the cloud droplet size distribution through each droplet having its own growth rate and history. When droplets grow by condensation or evaporation, water vapor and heat feedback with the environment, altering the distribution of …


Influence Of A Strong Magnetic Field On Fermi Energy Oscillations In Two-Dimensional Semiconductor Materials, Gafur Gulyamov, Ulugbek Inayatillyevich Erkaboev, Rustam Gulomzhonovich Rakhimov, Nozimjon Sayidov Sayidov, Jasurbek Mirzaev Jun 2021

Influence Of A Strong Magnetic Field On Fermi Energy Oscillations In Two-Dimensional Semiconductor Materials, Gafur Gulyamov, Ulugbek Inayatillyevich Erkaboev, Rustam Gulomzhonovich Rakhimov, Nozimjon Sayidov Sayidov, Jasurbek Mirzaev

Scientific Bulletin. Physical and Mathematical Research

This article discusses the effect of a quantizing magnetic field and temperature on Fermi energy oscillations in nanoscale semiconductor materials. A generalized mathematical expression is obtained for calculating the dependence of the Fermi energy oscillations on the magnetic field, temperature, and thickness of the quantum well. It is shown that the Fermi energy in nanoscale semiconductor materials under a quantizing magnetic field is quantized. The proposed theory explains the experimental results in two-dimensional semiconductor structures with a parabolic dispersion law.


Probing Exchange Bias At The Surface Of A Doped Ferrimagnetic Insulator, Yang Wang, Xiao Wang, Andy T. Clark, Hang Chen, Xuemei Cheng, John W. Freeland, John Q. Xiao Jan 2021

Probing Exchange Bias At The Surface Of A Doped Ferrimagnetic Insulator, Yang Wang, Xiao Wang, Andy T. Clark, Hang Chen, Xuemei Cheng, John W. Freeland, John Q. Xiao

Physics Faculty Research and Scholarship

With the realization of stress-induced perpendicular magnetic anisotropy, efficient spin-orbit torque switching, and room temperature topological Hall effect, interest in rare earth iron garnets has been revived in recent years for their potential in spintronic applications. In this study, we investigate the magnetic properties of micrometer-thick Bi and Ga substituted thulium iron garnets (BiGa:TmIG) grown by the liquid-phase epitaxy method. Above the magnetization compensation (MC) temperature, anomalous triple hysteresis is observed in BiGa:TmIG/Pt heterostructures by anomalous Hall effect measurements. X-ray magnetic circular dichroism and energy dispersive spectroscopy measurements reveal its origin as an internal exchange bias (EB) effect arising from …


Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek Jan 2021

Understanding The Effects Of Water Vapor And Temperature On Aerosol Using Novel Measurement Methods, Tyler Jacob Capek

Dissertations, Master's Theses and Master's Reports

Aerosol and water are inexorably linked, and both are ubiquitous within our atmosphere and required components for cloud formation. Relative humidity (RH), a temperature dependent quantity, can have a significant influence on the size, shape, and ultimately, the optical properties of the aerosol. RH can vary substantially on small spatial and short temporal scales in turbulent conditions due to rapid fluctuations in temperature and water vapor mixing ratio. Accurate assessment of optical enhancements due to an increase in RH is key for determining the particles’ impact on the climate and visibility.

A humidity-controlled cavity attenuated phase-shift albedometer (H-CAPS-PMSSA) …


Data From: Anomalous Electron Temperature, Bela G. Fejer Dec 2020

Data From: Anomalous Electron Temperature, Bela G. Fejer

Browse all Datasets

Anomalous Electron Temperatures in the evening equatorial ionosphere. These are outputs of simulations from the semi-empirical SAMI2-PE (Varney et al. 2012) for the night of the 02 and 05 August 2011.


Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova Nov 2020

Enhancing The Visibility Of Vernier Effect In A Tri-Microfiber Coupler Fiber Loop Interferometer For Ultrasensitive Refractive Index And Temperature Sensing, Fangfang Wei, Dejun Liu, Zhe Wang, Zhuochen Wang, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova

Articles

In this paper a Vernier effect based sensor is analyzed and demonstrated experimentally in a tri-microfiber coupler (Tri-MFC) and polarization-maintaining fiber (PMF) loop interferometer (Tri-MFC-PMF) to provide ultrasensitive refractive index and temperature sensing. The main novelty of this work is an analysis of parameters of the proposed Tri-MFC-PMF with the objective of determining the conditions leading to a strong Vernier effect. It has been identified by simulation that the Vernier effect is a primary factor in the design of Tri-MFC-PMF loop sensing structure for sensitivity enhancement. It is furthermore demonstrated experimentally that enhancing the visibility of the Vernier spectrum in …


Laser Spectoscopy Of Mandelstems - Brillian Scattering In Aqueous Nonelectrolyte Solutions, L. M. Sabirov, D. I. Semenov, X. S. Xaydarov, F. R. Sabirov Jan 2020

Laser Spectoscopy Of Mandelstems - Brillian Scattering In Aqueous Nonelectrolyte Solutions, L. M. Sabirov, D. I. Semenov, X. S. Xaydarov, F. R. Sabirov

Scientific Journal of Samarkand University

In this work we developed a method of laser spectroscopy to study the frequency shift of Mandelshtam-Brillouin components in the fine structure of Reyleigh line, which are origin due to the pressure fluctuations. The method allows to study a character of hypersound (~109 Hz)propagation in a critical region of a thermodynamic instability. Analysis of a complex of experimental material , presented in the paper, allows one to conclude that in aqueous solutions of non-electrolytes at critical concentration there is a whole structural transformations in solutions at the singular point temperature in “temperature-concentration” coordinates


Observation Of In-Plane Magnetic Field Induced Phase Transitions In Fese, Jong Mok Ok, Chang Il Kwon, Yoshimitsu Kohama, Jung Sang You, Sun Kyu Park, Ji-Hye Kim, Y.J. Jo, E.S. Choi, Koichi Kindo, Woun Kang, Ki-Seok Kim, E. G. Moon, Alex Gurevich, Jun Sung Kim Jan 2020

Observation Of In-Plane Magnetic Field Induced Phase Transitions In Fese, Jong Mok Ok, Chang Il Kwon, Yoshimitsu Kohama, Jung Sang You, Sun Kyu Park, Ji-Hye Kim, Y.J. Jo, E.S. Choi, Koichi Kindo, Woun Kang, Ki-Seok Kim, E. G. Moon, Alex Gurevich, Jun Sung Kim

Physics Faculty Publications

We investigate thermodynamic properties of FeSe under in-plane magnetic fields using torque magnetometry, specific heat, and magnetocaloric measurements. Below the upper critical field Hc2, we observed the field induced anomalies at H1 ∼ 15 T and H2 ∼ 22 T near H ∥ ab and below a characteristic temperature T* ∼ 2 K. The transition magnetic fields H1 and H2 exhibit negligible dependence on both temperature and field orientation. This contrasts to the strong temperature and angle dependence of Hc2, suggesting that these anomalies are attributed to the field induced phase transitions, …


Dynamic Pair-Breaking Current, Critical Superfluid Velocity, And Nonlinear Electromagnetic Response Of Nonequilibrium Superconductors, Ahmad Sheikhzada, Alex Gurevich Jan 2020

Dynamic Pair-Breaking Current, Critical Superfluid Velocity, And Nonlinear Electromagnetic Response Of Nonequilibrium Superconductors, Ahmad Sheikhzada, Alex Gurevich

Physics Faculty Publications

We report numerical calculations of a dynamic pair-breaking current density Jd and a critical superfluid velocity vd in a nonequilibrium superconductor carrying a uniform, large-amplitude AC current density J(t)=JasinΩt with Ω well below the gap frequency Ω ≪ Δ0/h. The dependencies Jd(Ω,T) and vd(Ω,T) near the critical temperature Tcwere calculated from either the full time-dependent nonequilibrium equations for a dirty s-wave superconductor or the time-dependent Ginzburg-Landau (TDGL) equations for a gapped superconductor, taking into account the GL relaxation time of the order parameter GL …


Effect Of Strain On Charge Density Wave Order In The Holstein Model, Benjami Cohen-Stead, Natanael Costa, Ehsan Khatami, Richard Scalettar Jul 2019

Effect Of Strain On Charge Density Wave Order In The Holstein Model, Benjami Cohen-Stead, Natanael Costa, Ehsan Khatami, Richard Scalettar

Faculty Publications

We investigate charge ordering in the Holstein model in the presence of anisotropic hopping, tx,ty=1-δ,1+δ, as a model of the effect of strain on charge-density-wave (CDW) materials. Using quantum Monte Carlo simulations, we show that the CDW transition temperature is relatively insensitive to moderate anisotropy δ 0.3, but begins to decrease more rapidly at δ 0.4. However, the density correlations, as well as the kinetic energies parallel and perpendicular to the compressional axis, change significantly for moderate δ. Accompanying mean-field theory calculations show a similar qualitative structure, with the transition temperature relatively constant at small δ, and a more rapid …


The Long‐Term Trends Of Nocturnal Mesopause Temperature And Altitude Revealed By Na Lidar Observations Between 1990 And 2018 At Midlatitude, Tao Yuan, Stanley C. Solomon, Chiao -Y. She, D. A. Krueger, Han-Li Liu May 2019

The Long‐Term Trends Of Nocturnal Mesopause Temperature And Altitude Revealed By Na Lidar Observations Between 1990 And 2018 At Midlatitude, Tao Yuan, Stanley C. Solomon, Chiao -Y. She, D. A. Krueger, Han-Li Liu

All Physics Faculty Publications

The mesopause, a boundary between mesosphere and thermosphere with the coldest atmospheric temperature, is formed mainly by the combining effects of radiative cooling of CO2, and the vertical adiabatic flow in the upper atmosphere. A continuous multidecade (1990‐2018) nocturnal temperature data base of an advanced Na lidar, obtained at Fort Collins, CO (41°N, 105°W), and at Logan, UT (42°N, 112°W), provides an unprecedented opportunity to study the long‐term variations of this important atmospheric boundary. In this study, we categorize the lidar‐observed mesopause into two categories: the “high mesopause” (HM) above 97 km during nonsummer months, mainly formed through the radiative …


Juxtaposition At 45 Km Of Temperatures From Rayleigh-Scatter Lidar And Reanalysis Models, David K. Moser May 2019

Juxtaposition At 45 Km Of Temperatures From Rayleigh-Scatter Lidar And Reanalysis Models, David K. Moser

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Weather and climate forecasts are almost exclusively produced by computer models, which use atmospheric measurements as starting points. It is a well-known and joked-about fact that model predictions can be incorrect at times. One of the reasons this happens is due to gaps in our knowledge of atmospheric conditions in areas where measurements don’t often taken place, such as the mesosphere, which stretches from roughly 45-90 km altitude.

A lidar is a device that can shoot out short bursts of laser light to measure things such as atmospheric thickness at a distance. From this information one can then derive the …


On Possible Inversion Effects In The Technology Of Capillary-Porous Materials, Bulbul Yerzhenbek Jan 2019

On Possible Inversion Effects In The Technology Of Capillary-Porous Materials, Bulbul Yerzhenbek

Turkish Journal of Physics

The article discusses the possible place and role of the well-known thermodynamic Joule-Thomson effect in the technology of capillary-porous materials. The presence of the Joule-Thomson effect in these materials is substantiated by the peculiarities of the mechanism and kinetics of the diffusion physicochemical processes proceeding when they are heated. A mathematical description of the integral effects in capillary-porous materials under isothermal conditions is given.


Field Experimental Investigation Of Temperature, Humidity And Solar Radiation Impacts On Formaldehyde Emission From Interior Furnishing Material (Particle Board): A Preliminary Study, Alula Yadete, Fitsum Tariku, Doug Horn Sep 2018

Field Experimental Investigation Of Temperature, Humidity And Solar Radiation Impacts On Formaldehyde Emission From Interior Furnishing Material (Particle Board): A Preliminary Study, Alula Yadete, Fitsum Tariku, Doug Horn

International Building Physics Conference 2018

Some part of indoor space components such as furniture and surfaces (like walls and floor carpet) contains contaminants and emit them over time. The emission is affected by different environmental factors like temperature, relative humidity, and solar radiation. As a result, three field experiments are conducted to assess the impact of these environmental factors on Formaldehyde emission. This study referred to previous literature on measuring volatile compound emission from wood stain using balance scale. Consequently, a similar test setup (balance scale) is adopted to investigate formaldehyde emission from test sample which is exposed to solar radiation in fully controlled test …


Impact Of Indoor Temperature And Co2 Levels On Occupant Thermal Perception And Cognitive Performance Of Adult Female Students In Saudi Arabia, Riham Jaber Ahmed, Dejan Mumovic, Marcella Ucci Sep 2018

Impact Of Indoor Temperature And Co2 Levels On Occupant Thermal Perception And Cognitive Performance Of Adult Female Students In Saudi Arabia, Riham Jaber Ahmed, Dejan Mumovic, Marcella Ucci

International Building Physics Conference 2018

Due to hot arid climate in Jeddah, Saudi Arabia, occupants rely on air conditioning (AC) to provide both ventilation requirements and thermal comfort. It is believed that this total reliance on AC have also a significant effect on thermal sensation as well as cognitive performance of building occupants. Using a multi-variable multilevel statistical analysis, the effects of classroom temperature and CO2 levels on cognitive performance were estimated. Eight neurobehavioral cognitive tests were used to evaluate cognitive performance of 499 female students (16-20 years old). In addition, thermal sensation votes were collected. All participants were exposed to nine different environmental conditions, …


Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter Sep 2018

Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter

Dissertations, Theses, and Capstone Projects

This work focuses on the study of electron transport of 2-D electron gas systems in relation to both fundamental properties of the systems such as disorder and scattering mechanisms, as well as unique magnetoresistance (MR) effects. A large portion of the discussion is built around the use of an in plane magnetic field to vary the ratio between the Zeeman energy between electrons of different spins and the Landau level spacing, creating a tool to control the quantization of the density of states (DOS).

This tool is first used to isolate Quantum Positive Magnetoresistance (QPMR), which grants insight to the …


Quantum Fields In Extreme Backgrounds, Leandro Medina De Oliveira May 2018

Quantum Fields In Extreme Backgrounds, Leandro Medina De Oliveira

Arts & Sciences Electronic Theses and Dissertations

Quantum field theories behave in interesting and nontrivial ways in the presence of intense electric and/or magnetic fields. Describing such behavior correctly, particularly at finite (nonzero) temperature and density, is of importance for particle physics, nuclear physics, astrophysics, condensed matter physics, and cosmology. Incorporating these conditions as external parameters also provides useful probes into the nonperturbative structure of gauge theories.

In this work, formalism for describing matter in a variety of extreme conditions is developed and implemented. We develop several expansions of one-loop finite temperature effects for spinor particles in the presence of magnetic fields, including the effects of confinement, …


Sodium Lidar For Mesopause Temperature And Wind Studies, Xiaoqi Xi May 2018

Sodium Lidar For Mesopause Temperature And Wind Studies, Xiaoqi Xi

Physics Capstone Projects

In 1990 Dr. Chiao-Yao She developed a narrowband Na Temperature lidar in Colorado State University (CSU), it immediately became an important instrument to measure the temperature in mesopause region (80-105 km in altitude): the atmospheric layer between mesosphere and thermosphere [Krueger et al., 2015]. Led by Dr. Tao Yuan, this system was relocated to Utah State University (USU) in summer 2010 and has been continuing its exploration of upper atmosphere. This report will give a brief introduction to the theory and application of Sodium Lidar.


Two-Photon Excitation Of Cesium Alkali Metal Vapor 72D, 82D Kinetics And Spectroscopy, Ricardo C. Davila Mar 2018

Two-Photon Excitation Of Cesium Alkali Metal Vapor 72D, 82D Kinetics And Spectroscopy, Ricardo C. Davila

Theses and Dissertations

Pulsed excitation on the two-photon Cs 62S½ → 72D3/2,5/2 transition results in time-resolved fluorescence at 697 nm and 672 nm. The rates for fine structure mixing between the 72D3/2,5/2 states have been measured for helium and argon rare gas collision partners. The mixing rates are very fast, 1.26 ± 0.05 x 10-9 cm3/(atom sec) for He and 1.52 ± 0.05 x 10-10 cm3 /(atom sec) for Ar, driven by the small energy splitting and large radial distribution for the valence electron. …


Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein Jan 2018

Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein

2018 Entries

With its small size and limited motor tool set, the Drosophila larva is a good system to study how animals alter specific elements of their behavior to search and reach optimal environmental conditions. We aim to understand the larva’s response to temperature across development, in sensory gradients, and to distinguish behavioral modulations based on physical changes from those due to sensory input. PID-controlled instruments drive temporal or spatial temperature gradients; combined with a moat system to replenish gels at high temperature, we can explore the larva’s full behavioral profile. Many larvae are simultaneously observed during free navigation in three different …


Band Filling And Temperature Effects On Electrical Conductivity In Strongly Correlated Hybridized Electron Systems, Dylan T. Meyer Jan 2018

Band Filling And Temperature Effects On Electrical Conductivity In Strongly Correlated Hybridized Electron Systems, Dylan T. Meyer

All Graduate Theses, Dissertations, and Other Capstone Projects

We investigate the effects of band filling as well as temperature change on the electrical conductivity of materials with strong interelectron interaction as well as band hybridization. This is done by use of the irreducible two-particle Green function method applied to strongly correlated electron systems described by the Periodic Anderson Model. It was found that there is a definite peak in electrical conductivity at low band occupancy when the d-energy sub-band is half filled. Conductivity was found to have a sharp drop with an increase in temperature as a result of thermal dispersion as well as a change in the …


Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa Mar 2017

Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa

Electronic Thesis and Dissertation Repository

Abstract

The electrical resistivity of high purity Cu, Zn and Co has been measured at pressures (P) up to 5GPa and at temperatures (T) in the liquid phase. The electrical resistivity of solid state Nb was also measured up to 5GPa and ~1900K. All measurements were made in a large volume cubic anvil press. Using two thermocouples placed at opposite ends of the sample wire, serving as temperature probes as well as resistance leads, a four-wire technique resistivity measurement was employed along with a polarity switch. Post-experiment compositional analyses were carried out on an electron microprobe.

The expected resistivity decrease …


Investigation Of A Novel Temperature-Sensing Mechanism Based On Strain-Induced Optical Path-Length Difference In A Multicore Optical Fiber, Belkis Gökbulut, Sema Güvenç, Mehmet Naci̇ İnci̇ Jan 2017

Investigation Of A Novel Temperature-Sensing Mechanism Based On Strain-Induced Optical Path-Length Difference In A Multicore Optical Fiber, Belkis Gökbulut, Sema Güvenç, Mehmet Naci̇ İnci̇

Turkish Journal of Physics

A four-core optical fiber is employed to investigate a novel temperature-sensing mechanism, which is based on the strain-induced optical path-length difference between the fiber core pairs. A short segment of a four-core fiber is wound around a solid stainless steel cylinder to form a tight circular loop, which is exposed to temperatures of up to 100 $^{\circ}$C. Temperature-induced radial expansion of the stainless steel cylinder causes a shear strain in the fiber and introduces an optical path-length difference between the fiber core pairs. This results in a total phase shift of about 20.40 $\pm $ 0.29 rad in the interference …


The Intrinsic Variability Of The Water Vapor Saturation Ratio Due To Mixing, Jesse Anderson Jan 2017

The Intrinsic Variability Of The Water Vapor Saturation Ratio Due To Mixing, Jesse Anderson

Dissertations, Master's Theses and Master's Reports

The water vapor concentration plays an important role for many atmospheric processes. The mean concentration is key to understand water vapor's effect on the climate as a greenhouse gas. The fluctuations about the mean are important to understand heat fluxes between Earth's surface and the boundary layer. These fluctuations are linked to turbulence that is present in the boundary layer. Turbulent conditions are simulated in Michigan Tech’s multiphase, turbulent reaction chamber, the π chamber. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh- Bénard convection at several turbulent intensities. These were used to calculate the saturation ratio, …


Temperature Dependent Transport Properties Of Chemical Vapor Deposition Graphene With Metal And Metal Hydride Surface Functionalization, Bochen Zhong Jun 2016

Temperature Dependent Transport Properties Of Chemical Vapor Deposition Graphene With Metal And Metal Hydride Surface Functionalization, Bochen Zhong

Theses and Dissertations

Graphene, a two-dimensional semi-conductor material containing carbon atoms tightly bonded together in a hexagonal structure, was first isolated by mechanical exfoliation in 2004. Over the past decade, it has drawn huge research interest due to its outstanding mechanical, thermal, and electrical properties. These unique properties of graphene lead to very high carrier mobility. In particular, after an annealing treatment to remove the residual impurities, the suspended graphene mobility exceeds 200,000 cm2/Vs. However, this value is highly reduced to only a few thousand cm2 /Vs in supported graphene on SiO2 or SiC substrates, due to different sources of scattering. For example, …


Heat Of Fusion Of Primary Alcohol Confined In Nanopores, Harrisonn Griffin Jun 2016

Heat Of Fusion Of Primary Alcohol Confined In Nanopores, Harrisonn Griffin

Honors Theses

Melting behavior of physically confined 1-decanol in nano porous silica was probed using a Differential Scanning Calorimeter (DSC). In agreement with the Gibbs-Thomson prediction, we observe that the melting temperature of the confined 1-decanol scales inversely with the physical size of the pores. Contrary to the assumption used in developing the Gibbs-Thomson equation, however, the apparent heat of fusion decreases as the pore size decreases. Previously, several models have been proposed where interfacial layers of molecules do not participate in the phase transition and thereby would not contribute to the heat of fusion. While these could reconcile the seeming contradiction, …


Random Field Disorder At An Absorbing State Transition In One And Two Dimensions, Hatem Barghathi, Thomas Vojta Feb 2016

Random Field Disorder At An Absorbing State Transition In One And Two Dimensions, Hatem Barghathi, Thomas Vojta

Physics Faculty Research & Creative Works

We investigate the behavior of nonequilibrium phase transitions under the influence of disorder that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equilibrium systems such "random-field" disorder destroys the phase transition in low dimensions by preventing spontaneous symmetry breaking. In contrast, we show here that random-field disorder fails to destroy the nonequilibrium phase transition of the one- and two-dimensional generalized contact process. Instead, it modifies the dynamics in the symmetry-broken phase. Specifically, the dynamics in the one-dimensional case is described by a Sinai walk of the domain walls between two different absorbing states. In the two-dimensional case, …


Validation Of Ace-Fts Version 3.5 Noy Species Profiles Using Correlative Satellite Measurements, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. Mclinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen Jan 2016

Validation Of Ace-Fts Version 3.5 Noy Species Profiles Using Correlative Satellite Measurements, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. Mclinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen

Chemistry & Biochemistry Faculty Publications

The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2 + NO3 + 2 x N2O5 + HNO3 + HNO4 + ClONO2 + BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of …


Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu Aug 2015

Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu

Doctoral Dissertations

This thesis includes two main parts: (I) The CH3[methyl radical] detection in methane/air flames and (II) the rotational temperature measurement of O2[molecular oxygen] in a variety of environments by using coherent microwave Rayleigh scattering from resonance enhanced multiphoton ionization (Radar REMPI).

In first the part, from Chapter I to Chapter III, the methyl radical detection and quantitative measurements have been conducted in hydrocarbon flame with one-dimensional and two-dimensional spatial-resolved concentration distribution. Due to the proximity of the argon resonance state (4+1 REMPI by 332.5 nm) with the CH3 state (2+1 REMPI by 333.6 nm), in …