Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Stars

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 51

Full-Text Articles in Physical Sciences and Mathematics

Supernovae Distributions And Their Relationships To Classes Of Stars, Sydney Menne Dec 2020

Supernovae Distributions And Their Relationships To Classes Of Stars, Sydney Menne

Arts & Sciences Undergraduate Showcase

Aims. Data from astronomical catalogs are plotted as spatial distributions of stars and supernovae throughout the Milky Way galaxy and the universe. I examined correlations seen between the luminosity classes of stars, types of supernovae, and selection effects observed in the data.

Methods. Data was gathered from three catalogs; the Gliese Catalog of Nearby Stars, the Tycho-2 Catalog, and the Open Supernova Catalog. Graphs and diagrams were created to visualize the distributions of the stellar luminosity classes and supernova types at different radial distances from the Sun. Trendlines were fit through the data to examine extrapolated predictions.

Results/Conclusions. Documenting stars …


Simulating The Outer Layers Of Rapidly Rotating Stars, Frank J. Robinson, Joel Tanner, Sarbani Basu Jul 2020

Simulating The Outer Layers Of Rapidly Rotating Stars, Frank J. Robinson, Joel Tanner, Sarbani Basu

Chemistry & Physics Faculty Publications

This paper presents the results of a set of radiative hydrodynamic (RHD) simulations of convection in the near-surface regions of a rapidly rotating star. The simulations use microphysics consistent with stellar models, and include the effects of realistic convection and radiative transfer. We find that the overall effect of rotation is to reduce the strength of turbulence. The combination of rotation and radiative cooling creates a zonal velocity profile in which the motion of fluid parcels near the surface is independent of rotation. Their motion is controlled by the strong up and down flows generated by radiative cooling. The fluid …


The Astrophysics Of Nanohertz Gravitational Waves, S. Burke-Spolaor, S. R. Taylor, M. Charisi, T. Dolch, J. S. Hazboun, A. M. Holgado, L. Z. Kelley, T. J. W. Lazio, D. R. Madison, N. Mcmann, C. M. F. Mingarelli, A. Rasskazov, X. Siemens, J. J. Simon, Tristan L. Smith Dec 2019

The Astrophysics Of Nanohertz Gravitational Waves, S. Burke-Spolaor, S. R. Taylor, M. Charisi, T. Dolch, J. S. Hazboun, A. M. Holgado, L. Z. Kelley, T. J. W. Lazio, D. R. Madison, N. Mcmann, C. M. F. Mingarelli, A. Rasskazov, X. Siemens, J. J. Simon, Tristan L. Smith

Physics & Astronomy Faculty Works

Pulsar timing array (PTA) collaborations in North America, Australia, and Europe, have been exploiting the exquisite timing precision of millisecond pulsars over decades of observations to search for correlated timing deviations induced by gravitational waves (GWs). PTAs are sensitive to the frequency band ranging just below 1 nanohertz to a few tens of microhertz. The discovery space of this band is potentially rich with populations of inspiraling supermassive black hole binaries, decaying cosmic string networks, relic post-inflation GWs, and even non-GW imprints of axionic dark matter. This article aims to provide an understanding of the exciting open science questions in …


X-Ray Swift Observations Of Sn 2018cow, L E. Rivera Sandoval, T J. Maccarone, A Corsi, P J. Brown, David Pooley, J C. Wheeler Oct 2018

X-Ray Swift Observations Of Sn 2018cow, L E. Rivera Sandoval, T J. Maccarone, A Corsi, P J. Brown, David Pooley, J C. Wheeler

Physics and Astronomy Faculty Research

Supernova (SN) 2018cow is an optical transient detected in the galaxy CGCG 137–068. It has been classified as a SN due to various characteristics in its optical spectra. The transient is also a bright X-ray source. We present results of the analysis of ∼ 62 ks of X-ray observations taken with the Neil Gehrels Swift Observatory over 27 days. We found a variable behavior in the 0 . 3 − 10 keV X-ray light curve of SN 2018cow, with variability timescales of days. The observed X-ray variability could be due to the interaction between the SN ejecta and a non-uniform …


Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2018

Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW( …


On Oxygen-Rich Sr Variables In The Solar Neighborhood, Tuncay Özdemi̇r Jan 2018

On Oxygen-Rich Sr Variables In The Solar Neighborhood, Tuncay Özdemi̇r

Turkish Journal of Physics

Brightness distribution of variable stars was investigated based on good Hipparcos parallaxes of semiregular variables (SRVs) in the solar neighborhood, and it is shown that the order of the variability types Lb, SR, SRb, SRa, and Mira is, statistically, an order of increasing brightness along the red giant branch and asymptotic giant branch. In addition, it is also shown that the majority of Miras are above and majority of SRVs are below the tip of the red giant branch. The periods of SRVs that fall in Wood's sequence C (fundamental mode) of large Magellanic clouds were identified. Statistically, the order …


Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2017

Gw170817: Observation Of Gravitational Waves From A Binary Neutron Star Inspiral, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 x 104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M …


Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2017

Gw170814: A Three-Detector Observation Of Gravitational Waves From A Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M⊙ and 25.3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03 …


Sloan Digital Sky Survey Iv: Mapping The Milky Way, Nearby Galaxies, And The Distant Universe, Michael R. Blanton, Matthew A. Bershady, Bela Abolfathi, Franco D. Albareti, Carlos Allende Prieto, Andres Almeida, Javier Alonso-García, Friedrich Anders, Scott F. Anderson, Brett Andrews, Erik Aquino-Ortíz, Alfonso Aragón-Salamanca, Maria Argudo-Fernández, Eric Armengaud, Eric Aubourg, Vladimir Avila-Reese, Carles Badenes, Stephen Bailey, Kathleen A. Barger, Jorge Barrera-Ballesteros, Curtis Bartosz, Dominic Bates, Falk Baumgarten, Julian Bautista, Rachael Beaton, Francesco Belfiore, Chad F. Bender, Andreas A. Berlind, Mariangela Bernardi, Florian Beutler, Renbin Yan, Daniel Lazarz, Kai Zhang Jun 2017

Sloan Digital Sky Survey Iv: Mapping The Milky Way, Nearby Galaxies, And The Distant Universe, Michael R. Blanton, Matthew A. Bershady, Bela Abolfathi, Franco D. Albareti, Carlos Allende Prieto, Andres Almeida, Javier Alonso-García, Friedrich Anders, Scott F. Anderson, Brett Andrews, Erik Aquino-Ortíz, Alfonso Aragón-Salamanca, Maria Argudo-Fernández, Eric Armengaud, Eric Aubourg, Vladimir Avila-Reese, Carles Badenes, Stephen Bailey, Kathleen A. Barger, Jorge Barrera-Ballesteros, Curtis Bartosz, Dominic Bates, Falk Baumgarten, Julian Bautista, Rachael Beaton, Francesco Belfiore, Chad F. Bender, Andreas A. Berlind, Mariangela Bernardi, Florian Beutler, Renbin Yan, Daniel Lazarz, Kai Zhang

Physics and Astronomy Faculty Publications

We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, …


Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2017

Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M⊙ and 19.4-5.9+5.3M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective …


Upper Limits On The Stochastic Gravitational-Wave Background From Advanced Ligo's First Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2017

Upper Limits On The Stochastic Gravitational-Wave Background From Advanced Ligo's First Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves …


M Dwarf Planet Habitability, Ben Koenigs Jan 2017

M Dwarf Planet Habitability, Ben Koenigs

Gateway Prize for Excellent Writing

The habitability of M dwarf planets has been debated greatly, as their parent stars possess both beneficial and detrimental qualities for the development of life. Initially, the astrobiological community questioned their habitability (Dole 1964), but as research and modeling techniques have improved, astrobiologists have become more accepting of the idea of life on M dwarf planets (Shields et al. 2016). The question of these planets’ habitability has great significance, because their long lifespans and commonality in the universe make them legitimate candidates for a plethora of extrasolar spacecraft missions, and potentially for the first discovery of life in other systems.


Improved Analysis Of Gw150914 Using A Fully Spin-Precessing Waveform Model, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2016

Improved Analysis Of Gw150914 Using A Fully Spin-Precessing Waveform Model, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement …


Binary Black Hole Mergers In The First Advanced Ligo Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2016

Binary Black Hole Mergers In The First Advanced Ligo Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, …


Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2016

Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, …


Properties Of The Binary Black Hole Merger Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2016

Properties Of The Binary Black Hole Merger Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5 M and 29-4+4M; for each parameter we report the median value and the range of the 90% credible interval. …


Tests Of General Relativity With Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. May 2016

Tests Of General Relativity With Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following …


Gw150914: Implications For The Stochastic Gravitational-Wave Background From Binary Black Holes, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2016

Gw150914: Implications For The Stochastic Gravitational-Wave Background From Binary Black Holes, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near …


Gw150914: The Advanced Ligo Detectors In The Era Of First Discoveries, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2016

Gw150914: The Advanced Ligo Detectors In The Era Of First Discoveries, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23√/Hz at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The …


Observation Of Gravitational Waves From A Binary Black Hole Merger, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2016

Observation Of Gravitational Waves From A Binary Black Hole Merger, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0x10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a …


Ultraviolet Emission Lines Of Si Ii In Cool Star And Solar Spectra, Sibasish Laha, Francis P. Keenan, Gary J. Ferland, Catherine A. Ramsbottom, Kanti M. Aggarwal, Thomas R. Ayres, Marios Chatzikos, Peter A. M. Van Hoof, Robin J. R. Williams Nov 2015

Ultraviolet Emission Lines Of Si Ii In Cool Star And Solar Spectra, Sibasish Laha, Francis P. Keenan, Gary J. Ferland, Catherine A. Ramsbottom, Kanti M. Aggarwal, Thomas R. Ayres, Marios Chatzikos, Peter A. M. Van Hoof, Robin J. R. Williams

Physics and Astronomy Faculty Publications

Recent atomic physics calculations for Si ii are employed within the cloudy modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ–3s3p2 4PJ' intercombination multiplet of Si II at ∼ 2335 Å are significantly reduced, as are those for …


Λλ Correlation Function In Au + Au Collisions At √S(Nn)=200 Gev, L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, S. Bültmann, I. Koralt Jan 2015

Λλ Correlation Function In Au + Au Collisions At √S(Nn)=200 Gev, L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, S. Bültmann, I. Koralt

Physics Faculty Publications

We present ΛΛ correlation measurements in heavy-ion collisions for Au + Au collisions at √sNN = 200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider. The Lednicky-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for dihyperon searches are discussed.


Characterizing The Ab Doradus Moving Group Via High-Resolution Spectroscopy And Kinematic Traceback, Kyle Mccarthy, Ronald J. Wilhelm Sep 2014

Characterizing The Ab Doradus Moving Group Via High-Resolution Spectroscopy And Kinematic Traceback, Kyle Mccarthy, Ronald J. Wilhelm

Physics and Astronomy Faculty Publications

We present a detailed analysis of 10 proposed F and G members of the nearby, young moving group AB Doradus (ABD). Our sample was obtained using the 2.7 m telescope at the McDonald Observatory with the coude echelle spectrograph, achieving R ~ 60,000 and signal-to-noise ratio ~200. We derive spectroscopic T eff, log(g), [Fe/H], and microturbulance (vt ) using a bootstrap method of the TGVIT software resulting in typical errors of 33K in T eff, 0.08 dex in log(g), 0.03 dex in [Fe/H], and 0.13 km s–1 in vt . …


Search For Gravitational Waves Associated With Γ-Ray Bursts Detected By The Interplanetary Network, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2014

Search For Gravitational Waves Associated With Γ-Ray Bursts Detected By The Interplanetary Network, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search …


Implementation And Testing Of The First Prompt Search For Gravitational Wave Transients With Electromagnetic Counterparts, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Mar 2012

Implementation And Testing Of The First Prompt Search For Gravitational Wave Transients With Electromagnetic Counterparts, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations.

Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.


Turbulent Mixing And Layer Formation In Double-Diffusive Convection: 3d Numerical Simulations And Theory, Erica Rosenblum, Pascale Garaud, Adrienne L. Traxler, Stephan Stellmach Apr 2011

Turbulent Mixing And Layer Formation In Double-Diffusive Convection: 3d Numerical Simulations And Theory, Erica Rosenblum, Pascale Garaud, Adrienne L. Traxler, Stephan Stellmach

Physics Faculty Publications

Double-diffusive convection, often referred to as semi-convection in astrophysics, occurs in thermally and compositionally stratified systems which are stable according to the Ledoux criterion but unstable according to the Schwarzschild criterion. This process has been given relatively little attention so far, and its properties remain poorly constrained. In this paper, we present and analyze a set of three-dimensional simulations of this phenomenon in a Cartesian domain under the Boussinesq approximation. We find that in some cases the double-diffusive convection saturates into a state of homogeneous turbulence, but with turbulent fluxes several orders of magnitude smaller than those expected from direct …


High-Quality Broadband Bvri Photometry Of Benchmark Open Clusters, Michael Deloss Joner Mar 2011

High-Quality Broadband Bvri Photometry Of Benchmark Open Clusters, Michael Deloss Joner

Theses and Dissertations

Photometric techniques are often used to observe stars and it can be demonstrated that fundamental stellar properties can be observationally determined using calibrated sets of photometric data. Many of the most powerful techniques utilized to calibrate stellar photometry employ the use of stars in clusters since the individual stars are believed to have many common properties such as age, composition, and approximate distance. Broadband photometric Johnson/Cousins BVRI observations are presented for several nearby open clusters. The new photometry has been tested for consistency relative to archival work and shown to be both accurate and precise. The careful use of a …


Spectra Of Type Ii Cepheid Candidates And Related Stars, Edward G. Schmidt, Danielle Rogalla, Lauren Thacker-Lynn Feb 2011

Spectra Of Type Ii Cepheid Candidates And Related Stars, Edward G. Schmidt, Danielle Rogalla, Lauren Thacker-Lynn

Edward Schmidt Publications

We present low-resolution spectra for variable stars in the Cepheid period range from the ROTSE-I Demonstration Project and the All Sky Automated Survey, some of which were previously identified as type II Cepheid candidates. We have derived effective temperatures, gravities, and metallicities from the spectra. Based on this, three types of variables were identified: Cepheid strip stars, cool stars that lie along the red subgiant and giant branch, and cool main-sequence stars. Many fewer type II Cepheids were found than expected and most have amplitudes less than 0.4 mag. The cool variables include many likely binaries as well as intrinsic …


Equation Of State Of A Dense And Magnetized Fermion System, Israel Portillo Vazquez Jan 2011

Equation Of State Of A Dense And Magnetized Fermion System, Israel Portillo Vazquez

Open Access Theses & Dissertations

The equation of state of a system of fermions in a uniform magnetic field is obtained in terms of the thermodynamic quantities of the theory by using functional methods. It is shown that the breaking of the O(3) rotational symmetry by the magnetic field results in a pressure anisotropy, which leads to the distinction between longitudinal- and transverse-to-the-field pressures. A criterion to find the threshold field at which the asymmetric regime becomes significant is discussed. This threshold magnetic field is shown to be the same as the one required for the pure field contribution to the energy and pressures to …