Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Triple-Differential Cross Sections For Target Ionization With Simultaneous Projectile Detachment In 200-Kev H⁻ + He Collisions, T. Ferger, Michael Schulz, Daniel Fischer, B. Najjari, R. Moshammer, J. D. Ullrich Oct 2007

Triple-Differential Cross Sections For Target Ionization With Simultaneous Projectile Detachment In 200-Kev H⁻ + He Collisions, T. Ferger, Michael Schulz, Daniel Fischer, B. Najjari, R. Moshammer, J. D. Ullrich

Physics Faculty Research & Creative Works

We have performed a kinematically complete experiment for target ionization with simultaneous projectile detachment (TIPD) in 200-keV H + He collisions. From the data we extracted triple-differential cross sections (TDCSs) for each electron separately. These TDCSs closely resemble corresponding data for single ionization by charged-particle impact. Surprisingly, the contributions from higher-order processes to TIPD, proceeding through two independent interactions of each electron with the core of the respective other collision partner, are found to be somewhat larger than the first-order process proceeding through the electron-electron interaction.


Simulation And Analysis Of Ultrafast Laser Pulse Induced Plasma Generation In Dielectric Materials, Jeremy Gulley, Sebastian Winkler, William Dennis Mar 2007

Simulation And Analysis Of Ultrafast Laser Pulse Induced Plasma Generation In Dielectric Materials, Jeremy Gulley, Sebastian Winkler, William Dennis

Jeremy R. Gulley

Recent experiments on optical damage by ultrashort laser pulses have demonstrated that the temporal pulseshape can dramatically influence plasma generation in fused silica and sapphire. In this work a modified 3+1D nonlinear Schroedinger equation for the pulse propagation coupled to a rate equation for the plasma density in the dielectric material is used to simulate pulse propagation and plasma formation in a range of dielectric materials. We use these simulations to analyze the influence of pulse-width, pulse-shape and beam geometry on the formation of the electron plasma and hence damage in the bulk material. In particular, when possible, we simulate …