Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Electrons

Physics Publications

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov Jan 2014

Temperature Dependence Of Defect-Related Photoluminescence In Iii-V And Ii-Vi Semiconductors, Michael A. Reshchikov

Physics Publications

Mechanisms of thermal quenching of photoluminescence (PL) related to defects insemiconductors are analyzed. We conclude that the Schön-Klasens (multi-center) mechanism of the thermal quenching of PL is much more common for defects in III–V and II–VI semiconductorsas compared to the Seitz-Mott (one-center) mechanism. The temperature dependencies of PLare simulated with a phenomenological model. In its simplest version, three types of defects are included: a shallow donor, an acceptor responsible for the PL, and a nonradiative center that has the highest recombination efficiency. The case of abrupt and tunable thermal quenching ofPL is considered in more detail. This phenomenon is predicted …


Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov Jan 2014

Time-Resolved Photoluminescence From Defects In N-Type Gan, Michael A. Reshchikov

Physics Publications

Point defects in GaN were studied with time-resolved photoluminescence (PL). The effects of temperature and excitation intensity on defect-related PL have been investigated theoretically and experimentally. A phenomenological model, based on rate equations, explains the dependence of the PL intensity on excitation intensity, as well as the PL lifetime and its temperature dependence. We demonstrate that time-resolved PL measurements can be used to find the concentrations of free electrons and acceptors contributing to PL in n-type semiconductors.