Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

High Dimensional Non-Linear Optimization Of Molecular Models, Joseph C. Fogarty Nov 2014

High Dimensional Non-Linear Optimization Of Molecular Models, Joseph C. Fogarty

USF Tampa Graduate Theses and Dissertations

Molecular models allow computer simulations to predict the microscopic properties of macroscopic systems. Molecular modeling can also provide a fully understood test system for the application of theoretical methods. The power of a model lies in the accuracy of the parameter values which govern its mathematical behavior. In this work, a new software, called ParOpt, for general high dimensional non-linear optimization will be presented. The software provides a very general framework for the optimization of a wide variety of parameter sets. The software is especially powerful when applied to the difficult task of molecular model parameter optimization. Three applications of …


Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin May 2014

Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to …


Simultaneous Optimization Of The Cavity Heat Load And Trip Rates In Linacs Using A Genetic Algorithm, Balša Terzić, Alicia S. Hofler, Cody J. Reeves, Sabbir A. Khan, Geoffrey A. Krafft, Jay Benesch, Arne Freyberger, Desh Ranjan Jan 2014

Simultaneous Optimization Of The Cavity Heat Load And Trip Rates In Linacs Using A Genetic Algorithm, Balša Terzić, Alicia S. Hofler, Cody J. Reeves, Sabbir A. Khan, Geoffrey A. Krafft, Jay Benesch, Arne Freyberger, Desh Ranjan

Physics Faculty Publications

In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.