Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Interactive Water Vortex Exhibit, Simon Way, Emily Laing, Roqaya Naseri, Makenzie Kan Dec 2023

Interactive Water Vortex Exhibit, Simon Way, Emily Laing, Roqaya Naseri, Makenzie Kan

Mechanical Engineering

The San Luis Obispo Children’s Museum requested an interactive water vortex exhibit to both engage and entertain inquisitive guests, ages two to eight. The goal was to design and manufacture an exhibit that would educate its users on the fluid mechanics behind water vortices. They activate the mechanics by spinning a wheel, which is perceived as the catalyst to manipulate the flow of water to successfully create a whirlpool. Our team has created an interactive display that will enlighten young minds, providing the museum with an educational exhibit which shares a concept not currently taught by any other. Our project …


Physically Based Rendering Techniques To Visualize Thin-Film Smoothed Particle Hydrodynamics Fluid Simulations, Aditya H. Prasad Jun 2021

Physically Based Rendering Techniques To Visualize Thin-Film Smoothed Particle Hydrodynamics Fluid Simulations, Aditya H. Prasad

Dartmouth College Undergraduate Theses

This thesis introduces a methodology and workflow I developed to visualize smoothed hydrodynamic particle based simulations for the research paper ’Thin-Film Smoothed Particle Hydrodynamics Fluid’ (2021), that I co-authored. I introduce a physically based rendering model which allows point cloud simulation data representing thin film fluids and bubbles to be rendered in a photorealistic manner. This includes simulating the optic phenomenon of thin-film interference and rendering the resulting iridescent patterns. The key to the model lies in the implementation of a physically based surface shader that accounts for the interference of infinitely many internally reflected rays in its bidirectional surface …


Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian Jul 2018

Streamwise Flow-Induced Oscillations Of Bluff Bodies - The Influence Of Symmetry Breaking, Tyler Gurian

Masters Theses

The influence of symmetry breaking on the flow induced oscillations of bluff bodies in the steamwise direction is studied. First, a series of experiments is conducted on a one-degree-of-freedom circular cylinder allowed to exhibit pure translational motion in the streamwise direction over a range of reduced velocities, 1.4 < U* < 4.4, corresponding to a Reynolds number range of 970 < Re < 3370. Two distinct regions of displacements were observed in reduced velocity ranges of 1.6 < U* < 2.5 and 2.75 < U* < 3.85. Measured force coefficients in the drag and lift direction were examined, along with the wake visualization, through the range of reduced velocities, to infer the resulting wake modes. A new Alternating Symmetric (AS) mode was found. This transition from symmetric to AS shedding occurred near the end of the first region of response. Similar tests were run with a square prism in the parameter space of 2.4 < U* < 5.8 and 757 < Re < 1900 over angles of incidence of 0° ≤ α ≤ 45°. A distinct region of lock-in is observed for α = 0°, 2.5°, 5°, 7.5° over 3.2 < U* < 5.4 for α = 0°, and decreasing with increasing α. The wake structures were found to be roughly symmetric for α = 0°, but transitioned towards asymmetry …


Elementary Computational Fluid Dynamics Using Finite-Difference Methods, Jason Turner, Scott Labrake Jun 2018

Elementary Computational Fluid Dynamics Using Finite-Difference Methods, Jason Turner, Scott Labrake

Honors Theses

Fluids permeate all of human existence, and fluid dynamics serves as a rich field of research for many physicists. Although the mathematics involved in studying fluids tends to get complicated, the physical intuition gained through daily exposure to such systems bridges the gap between abstract calculations and their physical meaning. We discuss the mathematical treatment and simulations of fluid flows found in everyday life, such as flow in a cavity and through a pipe. Our discussions follow the example set by several notable texts, referenced in the document.


Particle Swarms In Confining Geometries, Eric Robert Boomsma Oct 2014

Particle Swarms In Confining Geometries, Eric Robert Boomsma

Open Access Dissertations

The transport of micro- and nano-particles in subsurface fluid deposits is an area of increasing interest due to the rising use of these particles for consumer and industrial purposes. Subsurface particle transport is complicated by the presence of fractures and fracture networks which govern the paths that particles will be able to take. In this thesis, subsurface particle transport will be investigated using particle swarms; collections of hydro-dynamically interacting particles which exhibit group behavior. The effects of fluid viscosity, particle properties, fracture geometry, and fracture aperture on swarm behavior were experimentally investigated. ^ Swarm parameters were examined in time with …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


The Microchannel Flow Of A Micropolar Fluid, Guohua Liu Oct 1999

The Microchannel Flow Of A Micropolar Fluid, Guohua Liu

Doctoral Dissertations

Micro-channel flows have been computed to investigate the influence of Navier-Stokes formulation for the slip-flow boundary condition, and a micro-polar fluid model, respectively.

The results of the slip boundary condition show that the current methodology is valid for slip-flow regime (i.e., for values of Knudsen number less than approximately 0.1). Drag reduction phenomena apparent in some micro-channels can be explained by slip-flow theory. These results are in agreement with some computations and experiments.

An ad hoc micro-polar fluid model is developed to investigate the influence of micro effects, such as micro-gyration, in micro-scale flows. The foundation of the ad hoc …