Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Theses/Dissertations

2023

Density Functional Theory

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Effect Of Self-Interaction Correction On Molecular Polarizabilities And Core Ionization Energies, Sharmin Akter Dec 2023

Effect Of Self-Interaction Correction On Molecular Polarizabilities And Core Ionization Energies, Sharmin Akter

Open Access Theses & Dissertations

Density Functional Theory (DFT) is one of the most successful and popular computational Quantum Mechanical approaches to understanding materials. DFT allows the prediction of material properties from the electron density. Although in principle, density functional theory is exact, it, however, relies on approximate functional for exchange-correlation energy. Due to the approximate nature of the exchange-correlation functional, the self-Coulomb energy of the electrons is not exactly canceled out by the self-exchange, leading to the spurious self-interaction error (SIE). Due to this error, the potential shows incorrect behavior which leads to errors in calculated properties such as ionization energies, electron affinities, polarizabilities, …


First Principles Investigation Of Energy Harvesting Materials For Green Environment, Mehreen Javed Nov 2023

First Principles Investigation Of Energy Harvesting Materials For Green Environment, Mehreen Javed

Dissertations

The cutting-edge research of materials enables the discovery of novel energy harvesting materials. In this project the structural, electronic, magnetic, thermodynamic, thermoelectric, and optical properties of different energy harvesting materials are studied. The main objective of this work is primarily to study thermoelectrically efficient half-heuslers and photovoltaically active perovskites. Variant schematics of innovative compounds with defect introduction are investigated. The compositionally altered compounds designed by introducing crystallographic defects in terms of substitutional or interstitial dopants, offer new trends of material properties. To accomplish the task, Density Functional theory based computational packages (VASP and Wein2K) are used. Using defect and strain …


A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez Aug 2023

A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez

Open Access Theses & Dissertations

Radical ion pairs (RIPs) have been used to demonstrate quantum teleportation in molecular systems for applications in quantum information science. Covalent organic donor-acceptor (D-A) molecules can produce RIPs through photo-induced charge transfer and an additional radical (R) molecule makes quantum teleportation possible. We present the electronic structure and analyze charge transfer excited states of a recently studied [1] D-A-R molecular system using density functional theory. The distances between donor-acceptor and donor-radical are about 12.9 \AA $\,$ and 21.9 \AA, respectively. The excitation energies are calculated using the perturbative delta-SCF method and agree with other conventional excited-state methods and experimental reference …


Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson Aug 2023

Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson

Open Access Theses & Dissertations

Uranium trioxide (UO3) is a stable uranium oxide found throughout the nuclear fuel cycle. The γ-UO3 phase is of particular interest as the most stable at ambient conditions. As such, the γ-UO3 structure was selected for a theoretical investigation into the incorporation of metal dopants for nuclear intentional forensics applications. The two lattice types of this phase, tetragonal (I41/amd) and orthorhombic (Fddd), were investigated and found to be energetically identical, and as such the smaller tetragonal structure was selected for doping. Three transition metal dopants (Cr, Fe, and Ni) were incorporated into the structure interstitially and substitutionally at a total …


Development Of Multi-Configuration Methods On Density Functional Theory Orbitals And Application On The Study Of Dimers, Jose Gustavo Bravo Flores May 2023

Development Of Multi-Configuration Methods On Density Functional Theory Orbitals And Application On The Study Of Dimers, Jose Gustavo Bravo Flores

Open Access Theses & Dissertations

The configuration interaction (CI) methods is an exact method to solve the non relativistic Schrodinger equation, describing the wave function as a linear combination of Slater determinants. Because the computation time grows factorially as the number of electrons, CI is mostly used for relatively small systems. Density functional theory (DFT) rose as one of the most used methods for computational quantum chemistry in the last 30 years. DFT can describe a system's properties with the electron density, which only depends of of three coordinates. Due to its low computational costs it allows one to study bigger systems than CI, however …