Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr Dec 2017

Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr

University of New Orleans Theses and Dissertations

This project started early in the summer of 2016 when it became evident there was a need for an effective and efficient signal analysis toolkit for the Littoral Acoustic Demonstration Center Gulf Ecological Monitoring and Modeling (LADC-GEMM) Research Consortium. LADC-GEMM collected underwater acoustic data in the northern Gulf of Mexico during the summer of 2015 using Environmental Acoustic Recording Systems (EARS) buoys. Much of the visualization of data was handled through short scripts and executed through terminal commands, each time requiring the data to be loaded into memory and parameters to be fed through arguments. The vision was to develop …


Muon-Neutrino Electron Elastic Scattering And A Search For The Muon-Neutrino Magnetic Moment In The Nova Near Detector, Biao Wang Dec 2017

Muon-Neutrino Electron Elastic Scattering And A Search For The Muon-Neutrino Magnetic Moment In The Nova Near Detector, Biao Wang

Physics Theses and Dissertations

We use the NOvA near detector and the NuMI beam at Fermilab to study the neutrino-electron elastic scattering and the muon neutrino magnetic process beyond the Standard Model physics. The particle identifications of neutrino on electron elastic scattering are trained by using the multi-layer neural networks. This thesis provides a general discussion of this technique and shows a good agreement between data and MC for the neutrino-electron elastic weak scattering. By using 3.62e20 POT dataset in the NOvA near detector, we find 1.58e-9 Bohr magneton as the 90% C.L. upper limit. We also find a sensitivity of 8e-10 Bohr magneton …


Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione Sep 2017

Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione

Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium electrode and electrolyte materials for advanced rechargeable lithium ion batteries. Three projects are described in this thesis. The first involves 23Na and 37Al static and magic angle spinning NMR studies of NaAlH4/C anode materials for advanced rechargeable batteries. The second project is a study of paramagnetic lithium transition-metal phosphate cathode materials for Li-ion batteries, where 7Li, and 31P single crystal NMR was used in order to obtain detailed information on the local electronic and magnetic environments. The third project investigates …


Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck May 2017

Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck

Senior Theses

This paper explores the relationship between the operating temperature and electricity production of a simple heat engine. A Stirling engine was designed and constructed which runs on solar thermal energy collected by a Fresnel lens. The surface area of the solar collector was varied. This manipulated the operating temperature of the Stirling engine in order to measure power output. The mechanical energy from the engine was converted to electricity using a DC motor running in reverse, acting like a generator, in conjunction with an Arduino for data collection. Although adjustments must be made in order to improve the efficiency of …


Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace May 2017

Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace

Senior Theses

This research was to verify the hypothesis that resistivity of metal's thin film deposited in a low-pressure environment is the same as its solid material. Thermal Evaporation is a thin film deposition technique in which metal inside a vacuum is evaporated, then deposited onto a surface. Higher quality metal films are deposited when the vacuum pressure is lower. At higher pressures, more air molecules are trapped within the layers of metal, thus increasing scattering sites and increasing the resistance. However, reaching a lower pressure requires more time and effort. In this research, films were deposited at various pressures and resistivities …


Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere May 2017

Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere

Senior Theses

It is possible to produce electron beams with non-zero orbital angular momentum. Such beams, known as electron vortex beams, are theoretically able to transfer their orbital angular momenta to matter, causing the matter to rotate. Nanoparticles in an aqueous solution were observed with an electron vortex beam to detect the transfer of orbital angular momentum in a low-friction environment. Observing the transfer of orbital angular momentum to particles in solution is difficult due to the necessity of imaging the particles through a liquid and the random movement of particles in the solution. Thus, orbital angular momentum transfer to matter could …


Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul Apr 2017

Microwave Assisted Dipole-Dipole Transitions, Jacob T. Paul

Physics and Astronomy Honors Papers

We explore this two photon assisted transition through computational and numerical analysis of possible energy levels. We calculate the matrix elements of the energy transition in detail discussing constants and the quantum mechanical possibilities of energy exchanges in these systems.

The goal is to better understand the energy exchange, so that moving forward we can control it. This paper covers the theoretical ends to controlling the energy transition by the way of two photon assisted transitions. The energy transitions take place between a dipole-dipole interaction, and a microwave photon.


Grasping The Void: Immersion Tactics Using Gesture Controlled Physics Interaction Systems In Virtual Reality, Avery Rapson Jan 2017

Grasping The Void: Immersion Tactics Using Gesture Controlled Physics Interaction Systems In Virtual Reality, Avery Rapson

Senior Independent Study Theses

This thesis uses the HTC Vive in Unity to compare two different types of object interaction systems in order to determine the effectiveness of physics based interaction systems in a virtual environment. The research problem that motivates this project is the fact that there is no standardized method for defining successful object interaction techniques in VR. There are numerous interaction techniques in VR that fall short of simulating realistic object interaction. This project explores a physics based interaction system and examines how effective it is by comparing it to a non-physics based system. A model house with various interactable objects …


Competing Theories Of Pitch Perception: Frequency And Time Domain Analysis, Nowell Thacher Stoddard Jan 2017

Competing Theories Of Pitch Perception: Frequency And Time Domain Analysis, Nowell Thacher Stoddard

Senior Projects Spring 2017

Pitch perception is a phenomenon that has been the subject of much debate within the psychoacoustics community. It is at once a psychological, physiological and mathematical issue that has divided scientists for the last 200 years. My project aims to investigate the benefits and shortcomings of both the place theory and time theory approaches. This is done first by a model consistent with the long-standing focus on the frequency domain, and then by expanding to a more modern approach that functions in the time domain.


Holographic Scaling In Newtonian Gravity, Emma Machado Jan 2017

Holographic Scaling In Newtonian Gravity, Emma Machado

Honors Theses

Many high school and college students are required to take physics, but few actually learn to discover the mysteries of the field, because they are too busy trying to memorize equations and solve "plug and chug" style problems. Looking into the calculations and equations of physics, a holography can be seen within the subject. This holography can be discovered and made accessible to general physics students, by studying the duality that exists between Electricity and Gravity. Furthermore, the concept of mass in physics (MADM) can be calculated, within this holography, for various black holes along with the …


Multiscale Modeling Of Carbon Nanotube Synthesis In A Catalytic Chemical Vapor Deposition Reactor, Jonathan Troville Jan 2017

Multiscale Modeling Of Carbon Nanotube Synthesis In A Catalytic Chemical Vapor Deposition Reactor, Jonathan Troville

Browse all Theses and Dissertations

The bottom-up analysis of Carbon Nanotube synthesis is not well understood. Specifically, the question as to how carbon adsorbs to a substrate inclusive of a supported catalyst may lead to the energetically favorable structure of a hexagonal close- packed structure along the wall, or walls, of the tube. A first time simulation using COMSOL Multiphysics has been generated in order to capture the gas-phase mech- anism which leads to carbon production. It is thought that the carbon adsorbs and the walls are formed from the bottom up and the inside out for multi-wall CNTs. The studies involved accurately setting up …