Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of Isomeric States In Neutron-Rich Nuclei Approaching N = 28, Timilehin Hezekiah Ogunbeku Dec 2023

Characterization Of Isomeric States In Neutron-Rich Nuclei Approaching N = 28, Timilehin Hezekiah Ogunbeku

Theses and Dissertations

The investigation of isomeric states in neutron-rich nuclei provides useful insights into the underlying nuclear configurations, and understanding their occurrence along an isotopic chain can inform about shell evolution. Recent studies on neutron-rich Si isotopes near the magic number N = 20 and approaching N = 28 have revealed the presence of low-lying states with intruder configurations, resulting from multiple-particle, multiple-hole excitations across closed shell gaps. The characterization of these states involves measuring their half-lives and transition probabilities.

In this study, a new low-energy (7/21) isomer at 68 keV in 37Si was accessed via beta decay …


Direct Measurement Of The 114cd(��, ��)115cd Cross Section In The 1 Ev To 300 Kev Energy Range, Kofi Tutu Addo Assumin-Gyimah Aug 2023

Direct Measurement Of The 114cd(��, ��)115cd Cross Section In The 1 Ev To 300 Kev Energy Range, Kofi Tutu Addo Assumin-Gyimah

Theses and Dissertations

The large thermal cross section of cadmium makes it ideal for many practical applications where screening of thermal neutrons is desired. For example, in non-destructive assay techniques, or for astrophysical studies of the s-process. All such applications require precise knowledge of the neutron-capture cross section on cadmium. Although there are some data on neutron-capture cross sections particularly at thermal energies and at energies relevant for astrophysics, there is very little data at most other energies. Further, the evaluated cross sections from the ENDF and JENDL databases disagree at high energies. Therefore, there is a critical need for precise knowledge of …


Pairing And Rotation-Induced Nuclear Exotica In Covariant Density Functional Theory, Saja Teeti May 2023

Pairing And Rotation-Induced Nuclear Exotica In Covariant Density Functional Theory, Saja Teeti

Theses and Dissertations

Covariant density functional theory (CDFT) is one of the modern theoretical tools for describing the nuclear structure physics of finite nuclei. Its performance is defined by underlying covariant energy density functionals (CEDFs). In this dissertation and within the framework of the CDFT, different physical properties of the ground and the excited states of rotating and non-rotating nuclei have been investigated.

A systematic global investigation of pairing properties based on all available experimental data on pairing indicators has been performed for the first time in the framework of covariant density functional theory. It is based on separable pairing interaction of Ref.\ …


Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England May 2023

Monolithic Multiphysics Simulation Of Hypersonic Aerothermoelasticity Using A Hybridized Discontinuous Galerkin Method, William Paul England

Theses and Dissertations

This work presents implementation of a hybridized discontinuous Galerkin (DG) method for robust simulation of the hypersonic aerothermoelastic multiphysics system. Simulation of hypersonic vehicles requires accurate resolution of complex multiphysics interactions including the effects of high-speed turbulent flow, extreme heating, and vehicle deformation due to considerable pressure loads and thermal stresses. However, the state-of-the-art procedures for hypersonic aerothermoelasticity are comprised of low-fidelity approaches and partitioned coupling schemes. These approaches preclude robust design and analysis of hypersonic vehicles for a number of reasons. First, low-fidelity approaches limit their application to simple geometries and lack the ability to capture small scale flow …


Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen Dec 2022

Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen

Theses and Dissertations

The widespread pollution of mercury motivates research into its atmospheric chemistry and transport. Gaseous elemental mercury (Hg(0)) dominates mercury emission to the atmosphere, but the rate of its oxidation to mercury compound (Hg(II)) plays a significant role in controlling where and when mercury deposits to ecosystems. Atomic bromine is regarded as the main oxidant for Hg(0) oxidation, known to initiate the oxidation via a two-step process in the atmosphere – formation of BrHg (R1) and subsequent reactions of BrHg with abundant free radicals Y, i.e., NO2, HOO, etc. (R2), where the reaction of BrHg +Y could also lead to the …


Precise Measurement Of The Nuclear Dependence Of The Emc Effect In Light Nuclei, Abishek Karki, Abishek Karki Dec 2022

Precise Measurement Of The Nuclear Dependence Of The Emc Effect In Light Nuclei, Abishek Karki, Abishek Karki

Theses and Dissertations

Measurements of inclusive electron scattering cross-section ratios from light nuclei over a wide range of the Björken �� (0.3 < �� < 1) up to �� 2 = 8.3 GeV2 were made as part of experiment E10-10-008, which was conducted in Hall C at the Thomas Jefferson National Accelerator Facility. The measurements were performed using a beam energy of 10.602 GeV and an average beam current of 45 ��A. This dissertation provides a thorough description of the experiment as well as the extracted ratios of inclusive nuclear cross-sections with respect to the deuterium cross-sections (the EMC effect) for the targets 9 Be, 12 C, 10 B, and 11 B. The …


The Fermilab Spinquest Experiment: Commissioning And Plans Toward Production, Nuwan Chaminda Gunawardhana Waduge Aug 2022

The Fermilab Spinquest Experiment: Commissioning And Plans Toward Production, Nuwan Chaminda Gunawardhana Waduge

Theses and Dissertations

E1039/SpinQuest, a transversely-polarized Drell-Yan experiment at Fermilab, plans to use the 120 GeV proton beam and polarized NH3 and ND3 cryogenic targets to study azimuthal asymmetries in dimuon production to extract the magnitude as well as sign of the sea quarks Sivers functions. The SpinQuest spectrometer is optimized to detect oppositely-charged muons with a series of tracking chambers and hodoscope stations. The scope of this manuscript is to highlight the physics goals and the experimental setup with a focus on the ongoing debugging and training of one of the tracking systems, mainly drift chambers, as preparation for the upcoming commissioning …


Direct Simulation And Reduced-Order Modeling Of Premixed Flame Response To Acoustic Modulation, Zheng Qiao May 2022

Direct Simulation And Reduced-Order Modeling Of Premixed Flame Response To Acoustic Modulation, Zheng Qiao

Theses and Dissertations

This dissertation introduces a general, predictive and cost-efficient reduced-order modeling (ROM) technique for characterization of flame response under acoustic modulation. The model is built upon the kinematic flame model–G-equation to describe the flame topology and dynamics, and the novelties of the ROM lie in i) a procedure to create the compatible base flow that can reproduce the correct flame geometry and ii) the use of a physically-consistent acoustic modulation field for the characterization of flame response. This ROM addresses the significant limitations of the classical kinematic model, which is only applicable to simple flame configurations and relies on ad-hoc models …


Nuclear Transparency From Quasi-Elastic $^{12}C(E,E'P)$ Scattering Reaction Up To $Q^2=14.2 ~(Gev/C)^{2}$ In Hall C At Jefferson Lab, Deepak Kumar Bhetuwal Dec 2021

Nuclear Transparency From Quasi-Elastic $^{12}C(E,E'P)$ Scattering Reaction Up To $Q^2=14.2 ~(Gev/C)^{2}$ In Hall C At Jefferson Lab, Deepak Kumar Bhetuwal

Theses and Dissertations

Color Transparency $(CT)$ is a unique prediction of Quantum Chromodynamics $(QCD)$ where the final (and/or initial) state interactions of hadrons with the nuclear medium are suppressed for exclusive processes at high momentum transfers. While this phenomenon has been observed for mesons, there has never been a conclusive observation for baryons. A clear signal of $CT$ for baryons would be the first evidence of baryons fluctuating to a small size in the nucleus, and the onset would show the transition from nucleon-meson picture to quark-gluon degrees of freedom. The experiment $E1206107$, searching for the onset of $CT$ in protons was completed …