Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Fused-Molecular Systems For Organic Light Emitting Diodes, Avinash Jami Oct 2015

Fused-Molecular Systems For Organic Light Emitting Diodes, Avinash Jami

Masters Theses & Specialist Projects

Organic light emitting diodes (OLEDs) are electronic devices made by sandwitching organic light emissive materials between two electrodes. When voltage is applied across the two conductors, a bright light is generated. The color of the emitting light depends on the band gap of the semiconducting material. The work described here focuses on designing and synthesizing narrow band gap molecular systems derived from fused-arene derivatives for producing organic blue light emitting diodes. Three molecular systems derived from anthracene, pyrene, and carbazole, were designed and synthesized. Two molecular systems of anthracen-9-ylmethyl anthracene-9- carboxylate and pyren-1-ylmethyl 4-bromobenzoate were synthesized through Steglich esterification reaction …


Surface Microstructure Evolution Of Metallic Specimens Using The Large Chamber Scanning Electron Microscope, Grace Egbujor May 2015

Surface Microstructure Evolution Of Metallic Specimens Using The Large Chamber Scanning Electron Microscope, Grace Egbujor

Masters Theses & Specialist Projects

An initial study into the use of the large chamber scanning electron microscope (LCSEM) to interrogate the surface microstructure evolution of metallic specimens has been carried out. The LC-SEM located at Western Kentucky University is the largest instrument of its type at any university in the world. As such, unique measurements can be performed due to the size of its chamber and extended view of its optic system. Strain was varied for each individual specimen, and imaged using Secondary Electrons within the gauge length as well as near the grip position. Results will show progression of surface microstructures and nickel …


Generating Random Walks And Polygons With Thickness In Confinement, Sai Sindhuja Veeramachaneni May 2015

Generating Random Walks And Polygons With Thickness In Confinement, Sai Sindhuja Veeramachaneni

Masters Theses & Specialist Projects

Algorithms to generate walks (chains of unit-length, freely-jointed segments) and polygons (closed walks) in spherical confinements have been developed in the last few years. These algorithms generate polygons inside spherical confinement based on their mathematically derived probability distributions. The generated polygons do not occupy any volume { although that would be useful for some applications. This thesis investigates how to generate walks and polygons which occupy some volume in spherical confinement. More specifically, in this thesis, existing methods described in the literature have been studied and implemented to generate walks and polygons in confinement. Additionally, these methods were adapted to …