Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Evolutionary Dynamics Of Speciation And Extinction, Dawn Michelle King Dec 2015

Evolutionary Dynamics Of Speciation And Extinction, Dawn Michelle King

Dissertations

Presented here is an interdisciplinary study that draws connections between the fields of physics, mathematics, and evolutionary biology. Importantly, as we move through the Anthropocene Epoch, where human-driven climate change threatens biodiversity, understanding how an evolving population responds to extinction stress could be key to saving endangered ecosystems. With a neutral, agent-based model that incorporates the main principles of Darwinian evolution, such as heritability, variability, and competition, the dynamics of speciation and extinction is investigated. The simulated organisms evolve according to the reaction-diffusion rules of the 2D directed percolation universality class. Offspring are generated according to one of three reproduction …


Hydrogen Bond-Mediated Structural Order In Hydroxylated Bis-Mpa Dendritic Polymers: Experimental And Molecular Dynamics Simulation Study, Maliha N. Syed Dec 2015

Hydrogen Bond-Mediated Structural Order In Hydroxylated Bis-Mpa Dendritic Polymers: Experimental And Molecular Dynamics Simulation Study, Maliha N. Syed

Dissertations

Dendritic architectures are echoed throughout nature. While the significance of these pervasive patterns is not entirely clear, connections between their structures and physical properties are fascinating to contemplate. Particular interest has been paid to a family of synthetically manufactured and commercially available dendritic polymers based on 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) as a monomer. Composed of two hydroxyls and a carboxyl group, bis-MPA based structures hydrogen bond (H-bond) profusely. Given the high concentration and unique spatial orientation of end-groups, as well as the multitude of carbonyl, ester, and ether interior H-bond acceptors, a set of distinct H-bond organizations may be observed …


Deposition And Characterization Of Carbon Nanotubes (Cnts) Based Films For Sensing Applications, Amila C. Dissanayake Dec 2015

Deposition And Characterization Of Carbon Nanotubes (Cnts) Based Films For Sensing Applications, Amila C. Dissanayake

Dissertations

The advent of carbon nanotubes (CNTs) has opened up lot of novel applications because of their unique electrical and mechanical properties. CNTs are well known material for its exceptional electrical, mechanical, optical, thermal and chemical properties. A single-wall nanotube (SWNT) can be either semiconducting, metallic or semi-metallic, based on its chirality and diameter. SWNTs can be used in transistor device as active channels due to high electron mobility (~10000 cm2/(V s), electrical interconnects, nano-scale circuits, field-emission displays, light-emitting devices and thermal heat sinks due to low resistivity, high current density (~109A cm-2) and high thermal conductivity (~3500 W m-1). Further, …


Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi Jun 2015

Electron Transmission Through Micrometer Sized Funnelshaped Tapered Glass Capillaries And Electron Micro-Beam Production, Samanthi Jayamini Wickramarachchi

Dissertations

The prime motivation of this work is to understand the fundamental transmission process of an electron beam through a funnel-shaped capillary taking into account its shape together with the energy, angular and time dependence of the transmitted electrons produce a microsized electron beam. The utilized capillaries had inlet/outlet diameters of 800/16 μm, 800/100 μm and lengths of 35 mm. Considerable transmission of 800 and 1000 eV electrons for tilt angles up to 1.5o and only small transmission for 500 eV electrons was observed for the capillary with the smaller outlet diameter of 16 μm. Incident electrons with energies of …


Integrating Formative Assessment Into Physics Instruction: The Effect Of Formative Vs. Summative Assessment On Student Physics Learning And Attitudes, Chaiphat Plybour May 2015

Integrating Formative Assessment Into Physics Instruction: The Effect Of Formative Vs. Summative Assessment On Student Physics Learning And Attitudes, Chaiphat Plybour

Dissertations

Of many instructional strategies used to improve teaching and learning in science, formative assessment is potentially one of the most effective. A central feature is timely feedback during learning, giving students the opportunity to benefit and improve while also enabling teachers to adjust instruction to learner needs. By contrast, conventional assessment tends to be mostly summative, assigning point scores, grading and ranking students, and providing extrinsic motivation. For maximum effectiveness in enhancing learning, formative assessment should be designed into instruction from the start rather than being an add-on. This project comprised development, teaching, and research aspects. Two physics topic modules, …


Mueller Matrix Spectroscopic Ellipsometry Of Multiferroics, Roman Basistyy Jan 2015

Mueller Matrix Spectroscopic Ellipsometry Of Multiferroics, Roman Basistyy

Dissertations

Multiferroics, materials which possess several ferroic orders, are the focus of research in recent years. Among these materials are oxide crystals, such as, for example, RMnO3, RMn2O5, R3Fe5O12, where R stands for rare earth ions. The most fascinating physics occurs when magnon-lattice coupling reveals itself in the far-IR spectra of multiferroics. The expected optical behavior puts multiferroics into a more general category of bi-anisotropic materials, the properties of which could be only described using anisotropic dielectric ε(ω), magnetic μ(ω), and …


Electronic, Thermoelectric And Optical Properties Of Vanadium Oxides: Vo2, V2o3 And V2o5, Chiranjivi Lamsal Jan 2015

Electronic, Thermoelectric And Optical Properties Of Vanadium Oxides: Vo2, V2o3 And V2o5, Chiranjivi Lamsal

Dissertations

Correlated electrons in vanadium oxides are responsible for their extreme sensitivity to external stimuli such as pressure, temperature or doping. As a result, several vanadium oxides undergo insulator-to-metal phase transition (IMT) accompanied by structural change. Unlike vanadium pentoxide (V3O3), vanadium dioxide (VO3) and vanadium sesquioxide (V3O3) show I MT in their bulk phases. In this study, we have performed one electron Kohn-Sham electronic band-structure calculations of VO3, V3O3 and V2O5 in both metallic and insulating phases, implementing a full ab-initio simulation package …


A Comprehensive Study Of Evolution Of Photospheric Magnetic Field And Flows Associated With Solar Eruptions, Shuo Wang Jan 2015

A Comprehensive Study Of Evolution Of Photospheric Magnetic Field And Flows Associated With Solar Eruptions, Shuo Wang

Dissertations

The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. Recent theoretical work has shown that such a change would imply Lorentz force perturbations acting on both the outer solar atmosphere and the solar surface. This research uses vector magnetograms obtained with the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory to study a number of flares, which range from GOES-class C4 to X5 and occur in four active regions. In all the events, a permanent and rapid change of photospheric magnetic field closely associated with the …