Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Precision Measurement Of The Beam-Normal Single-Spin Asymmetry In Forward-Angle Elastic Electron-Proton Scattering, D. Androic, David S. Armstrong, Et Al. Sep 2020

Precision Measurement Of The Beam-Normal Single-Spin Asymmetry In Forward-Angle Elastic Electron-Proton Scattering, D. Androic, David S. Armstrong, Et Al.

Arts & Sciences Articles

A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of theta_lab = 7.9 degrees and a mean energy of 1.149 GeV. The asymmetry result is B_n = -5.194 +- 0.067 (stat) +- 0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles …


Demonstration Of The Lateral Ac Skin Effect Using A Pickup Coil, Anne E. Blackwell, Andrew P. Rotunno, Seth Aubin Aug 2020

Demonstration Of The Lateral Ac Skin Effect Using A Pickup Coil, Anne E. Blackwell, Andrew P. Rotunno, Seth Aubin

Arts & Sciences Articles

We present a simple demonstration of the skin effect by observing the current distribution in a wide rectangular strip conductor driven at frequencies in the 0.25–5 kHz range. We measure the amplitude and phase of the current distribution as a function of the transverse position and find that they agree well with numerical simulations: The current hugs the edges of the strip conductor with a significant variation in phase across the width. The experimental setup is simple, uses standard undergraduate physics instructional laboratory equipment, and is easy to implement as a short in-class demonstration. Our study is motivated by modeling …


Measurement Of The 3he Spin-Structure Functions And Of Neutron (3he) Spin-Dependent Sum Rules At 0.035 ≤ Q2 ≤ 0.24 Gev2, Jefferson Lab E97-110 Collaboration, David S. Armstrong Jun 2020

Measurement Of The 3he Spin-Structure Functions And Of Neutron (3he) Spin-Dependent Sum Rules At 0.035 ≤ Q2 ≤ 0.24 Gev2, Jefferson Lab E97-110 Collaboration, David S. Armstrong

Arts & Sciences Articles

The spin-structure functions g1 and g2, and the spin-dependent partial cross-section σTT have been extracted from the polarized cross-sections differences, σ| ν, Q 2 and σ⊥ ν, Q 2 measured for the 3 > He(e>, e' )X reaction, in the E97-110 experiment at Jefferson Lab. Polarized electrons with energies from 1.147 to 4.404 GeV were scattered at angles of 6◦ and 9◦ from a longitudinally or transversely polarized 3He target. The data cover the kinematic regions of the quasi-elastic, resonance production and beyond. From the extracted spin-structure functions, the first moments 1 (Q2) , 2 (Q2) and ITT Q 2 …


Parity-Violating Inelastic Electron-Proton Scattering At Low Q^2 Above The Resonance Region, D. Androic, David S. Armstrong, Qweak Collaboration May 2020

Parity-Violating Inelastic Electron-Proton Scattering At Low Q^2 Above The Resonance Region, D. Androic, David S. Armstrong, Qweak Collaboration

Arts & Sciences Articles

We report the measurement of the parity-violating asymmetry for the inelastic scattering of electrons from the proton, at Q2=0.082GeV2 and W=2.23 GeV, above the resonance region. The result AInel=−13.5±2.0(stat)±3.9(syst) ppm agrees with theoretical calculations, and helps to validate the modeling of the γZ interference structure functions FγZ1 and FγZ2 used in those calculations, which are also used for determination of the two-boson exchange γ−Z box diagram (□γZ) contribution to parity-violating elastic scattering measurements. A positive parity-violating asymmetry for inclusive π− production was observed, as well as positive beam-normal single-spin asymmetry for scattered electrons and a negative beam-normal single-spin asymmetry for …


Experiments And Theory On Dynamical Hamiltononian Monodromy, Matthew Perry Nerem Jan 2020

Experiments And Theory On Dynamical Hamiltononian Monodromy, Matthew Perry Nerem

Dissertations, Theses, and Masters Projects

In classical mechanics, one of the advanced topics is the study of action and angle variables. These variables are quite abstract, but very powerful tools for describing classical motion. If a system has a full set of conservation laws, and if the motion of the system is bounded, then the motion can be described as flow on a torus. Action variables are functions of the conservation laws that identify the torus on which the motion lies, while angle variables tell the location of the system on that torus. In certain cases, the functional relationship between the conservation laws and the …


Growth Engineering And Characterization Of Vanadium Dioxide Films For Ultraviolet Detection, Jason Andrew Creeden Jan 2020

Growth Engineering And Characterization Of Vanadium Dioxide Films For Ultraviolet Detection, Jason Andrew Creeden

Dissertations, Theses, and Masters Projects

There is a need for efficient ultraviolet (UV) detectors in many fields, such as aerospace, automotive manufacturing, biology, environmental science, and defense, due to photomultiplier tubes (the currently available technology) often not meeting application constraints in weight, robustness, and power consumption. In my thesis, I demonstrate that high quality vanadium dioxide (VO2) thin films, epitaxially grown on niobium doped titanium dioxide substrates (TiO2:Nb), display a strong photoconductive response in the UV spectral range, making them promising candidates for photomultiplier-free UV photodetection. By adjusting the characteristics of the substrate and VO2 film, the samples achieve external quantum efficiency exceeding 100% (reaching …


Quantitative Analysis Of Ekg And Blood Pressure Waveforms, Denise Erin Mckaig Jan 2020

Quantitative Analysis Of Ekg And Blood Pressure Waveforms, Denise Erin Mckaig

Dissertations, Theses, and Masters Projects

In the intensive care unit (ICU) of a hospital, patients are monitored continuously and the data on those patients provide powerful diagnostic tools for the medical community. However, the patient data creates incredibly large data sets with instruments measuring multiple signals simultaneously. This work seeks to improve monitoring techniques through analysis of large data sets from former ICU patients. By knowing the outcomes of patients in the past, can we detect patterns to diagnose future patients while also reducing the amount of recorded information? This thesis first seeks to improve methods of storing infant electrocardiograms (EKGs) by reducing the full …


Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films, Scott Madaras Jan 2020

Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films, Scott Madaras

Dissertations, Theses, and Masters Projects

Vanadium Dioxide (VO2) is a strongly correlated material which has been studied for many decades. VO2 has been proposed for uses in technologies such as optical modulators, IR modulators, optical switches and Mott memory devices. These technologies are taking advantage of VO2’s insulator to metal transition (IMT) and the corresponding changes to the optical and material properties. The insulator to metal transition in VO2 can be accessed by thermal heating, applied electric field, or ultra-fast photo induced processes. Recently, thin films of VO2 grown on Titanium Dioxide doped with Niobium (TiO2:Nb), have shown promise as a possible UV photo detector …


A First-Principles Study Of The Nature Of The Insulating Gap In Vo2, Christopher Hendriks Jan 2020

A First-Principles Study Of The Nature Of The Insulating Gap In Vo2, Christopher Hendriks

Dissertations, Theses, and Masters Projects

Upon cooling past a critical temperature Tc = 340 K Vanadium dioxide (VO2) exhibits a metal-insulator transition (MIT) from a metallic rutile R to an insulating monoclinic M1 phase. Other insulating phases, a monoclinic M2 and triclinic T, have been identifed and are accessible via strain or doping. Despite decades of research, the nature of the VO2 MIT is still not fully understood. In this work we present ab-initio hybrid density functional theory (DFT) calculations on the insulating phases, compare the results to experimental measurements and discuss their implications on our understanding of the VO2 MIT. Recent measurements on M1 …


Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study, Adam Chiciak Jan 2020

Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study, Adam Chiciak

Dissertations, Theses, and Masters Projects

Significant progress has been made in studying strongly correlated electronic systems with major focus on understanding high-temperature superconductivity. At the center of these studies are the so-called cuprates, which are characterized by a quasi-2D Copper-Oxide plane in which superconductivity is believed to arise. From the theoretical point of view, the complex electronic structure of these materials makes a fully ab initio many-body computation a formidable task, so we are forced to focus on minimal models that can reproduce the physics, the most well known of which is known as the Hubbard Model, which relies on the Zhang-Rice singet notion to …


Study Of Scalar Extensions For Physics Beyond The Standard Model, Marco Antonio Merchand Medina Jan 2020

Study Of Scalar Extensions For Physics Beyond The Standard Model, Marco Antonio Merchand Medina

Dissertations, Theses, and Masters Projects

In this thesis we investigate the phenomenology of beyond the Standard Model scenarios with extra scalar fields. A review and motivation of extended electroweak symmetry breaking is presented. Then we address observational evidence of new physics such as possible lepton flavor violating processes and the relic abundance of dark matter by implementing models with three Higgs doublets. The complementarity between theoretical restrictions and experimental bounds on some of the predicted signals is leveraged to sharpen the allowed parameter space. After that we study embeddings of two-Higgs doublets into the Randall-Sundrum model with emphasis on the scalar fluctuations of the metric …


Development Of Quantum Information Tools Based On Multi-Photon Raman Processes In Rb Vapor, Nikunjkumar Prajapati Jan 2020

Development Of Quantum Information Tools Based On Multi-Photon Raman Processes In Rb Vapor, Nikunjkumar Prajapati

Dissertations, Theses, and Masters Projects

Multi-photon nonlinear processes in atoms have served as important tools for quantum metrology, quantum communications, and quantum sensing. In this thesis, we experimentally address the interplay of various multi-photon Raman processes in hot Rb vapor, with the four-wave mixing (FWM) process being a central theme. FWM is the nonlinear response of a medium to a strong optical pump field inelastically scattering off atomic resonances and resulting in the generation of additional photons in different modes. FWM is a detrimental, but inherent part of electromagnetically induced transparency (EIT) and Raman based quantum memories. However, we were able to weaken the four-photon …