Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Three Experiments On Complex Fluids, Yang Liu Dec 2017

Three Experiments On Complex Fluids, Yang Liu

Electronic Thesis and Dissertation Repository

The behaviour of complex fluids is fundamentally interesting and important in many applications. This thesis reports on three experiments on the thermal and rheological behaviour of complex fluids. The first is a study of the rheological properties of and heat transport in a saline solution of hydroxyethyl cellulose. This material has been used as a tissue phantom in testing the behavior of medical devices in MRI scanners. We find it behaves as a typical entangled polymer, and flows in response to local heating, such as could occur due to eddy-current heating of metallic devices in an MR scanner. We use …


Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni Nov 2017

Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni

Electronic Thesis and Dissertation Repository

This thesis presents a newly developed mechanism and predictive model for the corrosion of Alloy 800. The Fe-Cr-Ni Alloy (Incoloy 800) is mainly used for steam generator (SG) tubing in CANDU and PWR reactors and is a candidate material for the proposed Canadian Supercritical Water Reactor (SCWR) in which it will be exposed to extreme conditions of high radiation flux and large temperature gradients. The influence of gamma radiation and water chemistry conditions on the corrosion behaviour of Alloy 800 are studied in this work. Ionizing radiation creates reducing (•eaq, •H, •O2-) and oxidizing …


Construction And Analysis Of Accurate Exchange-Correlation Potentials, Sviataslau V. Kohut Aug 2017

Construction And Analysis Of Accurate Exchange-Correlation Potentials, Sviataslau V. Kohut

Electronic Thesis and Dissertation Repository

Practical Kohn–Sham density-functional calculations require approximations to the exchange-correlation energy functional, EXC[ρ], or the exchange-correlation potential, vXC(r), defined as the functional derivative of EXC[ρ] with respect to the electron density, ρ. This thesis focuses on the following problems: (i) development of approximate exchange-correlation potentials by modelling the exchange-correlation charge distribution; (ii) accurate approximation of functional derivatives of orbital-dependent functionals; (iii) generation of exchange-correlation potentials from many-electron wavefunctions; (iv) analysis of accurate exchange-correlation potentials in atoms and molecules.

The advantage of modelling the exchange-correlation potential through the exchange-correlation …


Simulation Of Driven Elastic Spheres In A Newtonian Fluid, Shikhar M. Dwivedi Aug 2017

Simulation Of Driven Elastic Spheres In A Newtonian Fluid, Shikhar M. Dwivedi

Electronic Thesis and Dissertation Repository

Simulations help us test various restrictions/assumptions placed on physical systems that would otherwise be difficult to efficiently explore experimentally. For example, the Scallop Theorem, first stated in 1977, places limitations on the propulsion mechanisms available to microscopic objects in fluids. In particular, the theorem states that when the viscous forces in a fluid dominate the inertial forces associated with a physical body, such a physical body cannot generate propulsion by means of reciprocal motion. The focus of this thesis is to firstly, explore an adaptive Multiple-timestep(MTS) scheme for faster molecular dynamics(MD) simulations, and secondly, use hybrid MD-LBM(Lattice-Boltzman Method) to test …


Methods For Improved Estimation Of Low Blood Velocities Using Vector Doppler Ultrasound, Bushra Hussain Apr 2017

Methods For Improved Estimation Of Low Blood Velocities Using Vector Doppler Ultrasound, Bushra Hussain

Electronic Thesis and Dissertation Repository

Accurate estimation of low 3D blood velocities, such as near the wall in recirculation or disturbed flow regions, is important for accurate mapping of velocities to improve estimations of wall shear stress and turbulence, which are associated risk factors for vascular disease and stroke. Doppler ultrasound non-invasively measures blood-velocities but suffers from two major limitations addressed in this thesis. These are angle dependence of the measurements, which requires the knowledge of beam-to-flow angle, and the wall-filter. The high-pass wall filter that is applied to attenuate the high-intensity low-frequency signal from tissue and slowly moving vessel wall also attenuates any low …


The Study Of Plasmonics In Nanohole Metallic Metamaterials, Kieffer J. Davieau Apr 2017

The Study Of Plasmonics In Nanohole Metallic Metamaterials, Kieffer J. Davieau

Electronic Thesis and Dissertation Repository

Plasmonics is the study of light-matter interaction. The interaction of incident light (photons) with surface plasmons present in metamaterials results in unique optical properties. Nanohole arrays are a metamaterial consisting of an array of sub-wavelength holes perforated in an optically thin metallic film which resides upon a dielectric material. The interaction of light with the surface plasmons present in the nanohole array leads to extraordinary optical transmission which produces resonance peaks with a higher intensity than the incident light. By changing the physical parameters of the nanohole array, such as hole size and periodicity, the resonance peaks can be tuned …


Linear And Nonlinear Dynamics Of Spin Waves In Ferromagnetic Nanowires, Zahra Haghshenasfard Apr 2017

Linear And Nonlinear Dynamics Of Spin Waves In Ferromagnetic Nanowires, Zahra Haghshenasfard

Electronic Thesis and Dissertation Repository

Motivated by recent experimental developments, we present a theoretical study of some linear and nonlinear properties of spin waves in ferromagnetic nanostructures under conditions of microwave pumping. A microscopic (or Hamiltonian-based) approach is followed including terms for both the short-range exchange and the long-range dipole-dipole interactions, as well as the effects of an external magnetic field, single-ion anisotropy, biquadratic exchange and the Ruderman-KittelKasuya-Yosida interactions, as appropriate. In ultrathin films and nanowires with thickness or lateral dimensions less than about 100 nm, the discreteness of the quantized spin waves (or magnons) and their spatial distributions become modified, making it appropriate to …


Developments In Pet-Mri For Radiotherapy Planning Applications, John Christian Patrick Mar 2017

Developments In Pet-Mri For Radiotherapy Planning Applications, John Christian Patrick

Electronic Thesis and Dissertation Repository

The hybridization of magnetic resonance imaging (MRI) and positron emission tomography (PET) provides the benefit of soft-tissue contrast and specific molecular information in a simultaneous acquisition. The applications of PET-MRI in radiotherapy are only starting to be realised. However, quantitative accuracy of PET relies on accurate attenuation correction (AC) of, not only the patient anatomy but also MRI hardware and current methods, which are prone to artefacts caused by dense materials. Quantitative accuracy of PET also relies on full characterization of patient motion during the scan. The simultaneity of PET-MRI makes it especially suited for motion correction. However, quality assurance …


Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa Mar 2017

Experimental Studies Of Electrical Resistivity Behavior Of Cu, Zn And Co Along Their Melting Boundaries: Implications For Heat Flux At Earth’S Inner Core Boundary, Innocent Chinweikpe Ezenwa

Electronic Thesis and Dissertation Repository

Abstract

The electrical resistivity of high purity Cu, Zn and Co has been measured at pressures (P) up to 5GPa and at temperatures (T) in the liquid phase. The electrical resistivity of solid state Nb was also measured up to 5GPa and ~1900K. All measurements were made in a large volume cubic anvil press. Using two thermocouples placed at opposite ends of the sample wire, serving as temperature probes as well as resistance leads, a four-wire technique resistivity measurement was employed along with a polarity switch. Post-experiment compositional analyses were carried out on an electron microprobe.

The expected resistivity decrease …


Design Of Radio-Frequency Arrays For Ultra-High Field Mri, Ian R O Connell Jan 2017

Design Of Radio-Frequency Arrays For Ultra-High Field Mri, Ian R O Connell

Electronic Thesis and Dissertation Repository

Magnetic Resonance Imaging (MRI) is an indispensable, non-invasive diagnostic tool for the assessment of disease and function. As an investigational device, MRI has found routine use in both basic science research and medicine for both human and non-human subjects.

Due to the potential increase in spatial resolution, signal-to-noise ratio (SNR), and the ability to exploit novel tissue contrasts, the main magnetic field strength of human MRI scanners has steadily increased since inception. Beginning in the early 1980’s, 0.15 T human MRI scanners have steadily risen in main magnetic field strength with ultra-high field (UHF) 8 T MRI systems deemed to …