Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Light Scattering In Diffraction Limit Infrared Imaging, Ghazal Azarfar Aug 2019

Light Scattering In Diffraction Limit Infrared Imaging, Ghazal Azarfar

Theses and Dissertations

Fourier Transform Infrared (FTIR) microspectroscopy is a noninvasive technique for chemical imaging of micrometer size samples. Employing an infrared microscope, an infrared source and FTIR spectrometer coupled to a microscope with an array of detectors (128 x 128 detectors), enables collecting combined spectral and spatial information simultaneously. Wavelength dependent images are collected, that reveal biochemical signatures of disease pathology and cell cycle. Single cell biochemistry can be evaluated with this technique, since the wavelength of light is comparable to the size of the objects of interest, which leads to additional spectral and spatial effects disturb biological signatures and can confound …


Scattering In Infrared Microspectroscopy, Alex James Schofield Aug 2019

Scattering In Infrared Microspectroscopy, Alex James Schofield

Theses and Dissertations

Mid-infrared absorbance spectra obtained from spatially inhomogeneous and finite samples often contain scattering effects that undermine the Beer-Lambert law assumption. Such spectra contain generally non-linear contributions from the scattering material’s complex refractive index, which may result in derivative-like bands with shifted peak positions. It is first shown using Mie theory for spherical scatterers, that these band distortions may be interpreted and accurately modeled by Fano theory when the imaginary part of its complex dielectric function is small and Lorentzian in nature—as is the case for many biological media. By fitting Fano line shapes to isolated absorbance bands, recovery of the …


Optimizing Advanced Ligo's Scientific Output With Fast, Accurate, Clean Calibration, Aaron Daniel Viets May 2019

Optimizing Advanced Ligo's Scientific Output With Fast, Accurate, Clean Calibration, Aaron Daniel Viets

Theses and Dissertations

Since 2015, the direct observation of gravitational waves has opened a new window to observe the universe and made strong-field tests of Einstein's general theory of relativity possible for the first time. During the first two observing runs of the Advanced gravitational-wave detector network, the Laser Interferometer Gravitational-wave Observatory (LIGO) and the Virgo detector have made 10 detections of binary black hole mergers and one detection of a binary neutron star merger with a coincident gamma-ray burst. This dissertation discusses methods used in low and high latency to produce Advanced LIGO's calibrated strain data, highlighting improvements to accuracy, latency, and …


Nominalization And Interpretation: A Critique Of Global Nominalization Criteria, Jason Alen Dewitt May 2019

Nominalization And Interpretation: A Critique Of Global Nominalization Criteria, Jason Alen Dewitt

Theses and Dissertations

Nominalization is the process which removes abstract objects from our scientific theories. But what makes a proposed nominalization a good or successful one? In the paper “Is It Possible to Nominalize Quantum Mechanics,” Otávio Bueno develops criteria for any successful nominalization. In the present work, I discuss one of these criteria that I call the “interpretation criterion.” It claims that a nominalization of a scientific theory should be neutral with regards to the interpretations of that theory. I argue that the interpretation criterion is problematic, and that it should be replaced with an alternative criterion of nominalization. I first explicate …