Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Physical Sciences and Mathematics

Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu Dec 2022

Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu

Doctoral Dissertations

The primary focus of this dissertation is to develop a next-generation, state-of-the-art neutrino kinetics capability that will be used in the context of the next-generation, state-of-the-art core-collapse supernova (CCSN) simulation frameworks \thornado\ and \FLASH.\index{CCSN} \thornado\ is a \textbf{t}oolkit for \textbf{h}igh-\textbf{or}der \textbf{n}eutrino-r\textbf{ad}iation hydr\textbf{o}dynamics, which is a collection of modules that can be incorporated into a simulation code/framework, such as \FLASH, together with a nuclear equation of state (EOS)\index{EOS} library, such as the \WeakLib\ EOS tables. The first part of this work extends the \WeakLib\ code to compute neutrino interaction rates from~\cite{Bruenn_1985} and produce corresponding opacity tables.\index{Bruenn 1985} The processes of emission, …


Development Of A New High-Resolution Neutron Detector And Beta-Delayed Neutron Spectroscopy Of 24o., Shree K. Neupane Dec 2022

Development Of A New High-Resolution Neutron Detector And Beta-Delayed Neutron Spectroscopy Of 24o., Shree K. Neupane

Doctoral Dissertations

An efficient neutron detection system with good energy resolution is needed to correctly characterize the decays of neutron-rich nuclei where beta-delayed neutron emission is a dominant decay mode. Precision neutron spectroscopy probes nuclear structure effects in neutron-rich nuclei and is essential to exploit the opportunities in new-generation radioactive beam facilities. A new high-resolution neutron detector, Neutron dEtector with Xn Tracking (NEXT), has been constructed, characterized, and tested in decay and reaction experiments. Its essential capability is the neutron interaction position localization, which enables improvement in energy resolution without compromising detection efficiency in the time-of-flight measurements. Neutron-gamma discrimination capability of NEXT …


Constraining The 30p(P,Γ)31s Reaction Using 30p(D,Pγ)31p With Goddess, Rajesh Ghimire Dec 2022

Constraining The 30p(P,Γ)31s Reaction Using 30p(D,Pγ)31p With Goddess, Rajesh Ghimire

Doctoral Dissertations

The 30P(p,γ)31S reaction acts as a bottleneck for classical nova nucleosynthesis beyond A=30 in ONe novae, due in part to the long lifetime of 30P (∼2.5 minutes) with respect to the timescale of a nova outburst. Also, the 30P(p,γ)31S reaction rate directly affects the isotopic ratio of 30Si/28Si, which is an important nova identifier in the analysis of pre-solar grains. O/S, S/Al, O/P, and P/Al elemental abundance ratios can be used as nuclear thermometers for classical novae by constraining the 30P(p,γ)31S reaction rate.

However, direct measurement of …


The Impact Of A Nuclear Disturbance On A Space-Based Quantum Network, Alexander Miloshevsky Dec 2022

The Impact Of A Nuclear Disturbance On A Space-Based Quantum Network, Alexander Miloshevsky

Doctoral Dissertations

Quantum communications tap into the potential of quantum mechanics to go beyond the limitations of classical communications. Currently, the greatest challenge facing quantum networks is the limited transmission range of encoded quantum information. Space-based quantum networks offer a means to overcome this limitation, however the performance of such a network operating in harsh conditions is unknown. This dissertation analyzes the capabilities of a space-based quantum network operating in a nuclear disturbed environment. First, performance during normal operating conditions is presented using Gaussian beam modeling and atmospheric modeling to establish a baseline to compare against a perturbed environment. Then, the DEfense …


Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen Dec 2022

Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen

Doctoral Dissertations

Turbulence is ubiquitous in life —from biology to astrophysics. The best direct numeric simulations (DNS) have only been benchmarked against low resolution, time-averaged experimental configurations—partly because of limitations in computing power. With time, computing power has greatly increased, so there is need for higher quality data of turbulent flow. In this dissertation, we explore a solution that enables quantitative visualization measurement of the velocity field in liquid helium, which has the potential of breaking new ground for high Reynolds number turbulence research and model testing.

Our technique involves creation of clouds of molecular tracers using 3He-neutron absorption reaction in liquid …


The Structure Of 71ni Via Beta-Delayed Neutron Spectroscopy Of 71co, Andrew Keeler Aug 2022

The Structure Of 71ni Via Beta-Delayed Neutron Spectroscopy Of 71co, Andrew Keeler

Doctoral Dissertations

Studies of beta decays can give insights into the underlying structure of the nucleus. In particular, decays of closed-shell and near-closed-shell nuclei can provide important benchmarks for structure models, which are used in simulations of r-process nucleosynthesis. This work reports on a study of beta decays of 71Co produced in an experiment that was carried out in October 2016 at MSU’s National Superconducting Cyclotron Laboratory (NSCL) using the Versatile Array of Neutron Detectors at Low Energy (VANDLE). In order to carry out this experiment, a novel position-sensitive scintillating detector was developed to enable the sub-nanosecond timing response that VANDLE …


Understanding Liquid Dynamics Using The Van Hove Function From Inelastic Neutron Scattering Measurements, Yadu Krishnan Sarathchandran Aug 2022

Understanding Liquid Dynamics Using The Van Hove Function From Inelastic Neutron Scattering Measurements, Yadu Krishnan Sarathchandran

Doctoral Dissertations

Liquid state physics remains relatively unexplored compared to solid-state physics, which achieved massive progress over the last century. The theoretical and experimental methodologies used in solid-state physics are not suitable to study the liquid state due to the latter's strong time dependence and the lack of periodicity in structure. The approaches based on phonon dynamics break down when phonons are over-damped and localized in liquids. The microscopic nature of atomic dynamics and many-body interactions leading to liquid state properties such as viscosity and dielectric loss in liquids remain unclear. Inelastic neutron scattering measurements were done to study the microscopic origins …


Studying Electron Dynamics For Quantum Materials With Real Space Resolution: A Wannier Orbital Approach To Spectroscopy Using High-Performance Supercomputers, Casey J. Eichstaedt Aug 2022

Studying Electron Dynamics For Quantum Materials With Real Space Resolution: A Wannier Orbital Approach To Spectroscopy Using High-Performance Supercomputers, Casey J. Eichstaedt

Doctoral Dissertations

Quantum materials have a promising future for energy and security applications which will lay the bedrock for material science research for decades to follow. Partic- ularly, ‘one-dimensional’ Mott-insulating cuprates such as SrCuO 2 and (Ca)Sr 2 CuO 3 have been deemed to fall under a ‘fractionalization’ paradigm in which the electrons disintegrate into bosonic collective excitations of their fundamental constituents— spin, charge, and ‘orbital’ degrees of freedom— due to the anisotropic crystalline structure, deeming them outside the band theory of solids. Here, I provide ab initio theory for the ‘one-dimensional’ cuprates SrCuO 2 and (Ca)Sr 2 CuO 3 using no …


Topological States In Matter, Hasitha W. Suriya Arachchige Aug 2022

Topological States In Matter, Hasitha W. Suriya Arachchige

Doctoral Dissertations

Topologically nontrivial spin textures, mesoscopic spin configurations that cannot be continuously transformed to an elementary magnetic configuration such as a ferromagnet or antiferromagnet, are of interest due to their ability to exhibit magnetic solitons, with topological protection. Such properties have the potential for applications in future data storage and communication devices. For example, spin textures found in materials such as MnSi, Cu2OSe3, Co-Zn-Mn alloys, and GaV4S8, commonly known as skyrmions, are driven by the interplay of atomic-scale exchange interactions, single-ion anisotropy, and an applied magnetic field. Of particular importance to this class of materials is the presence of a Dyaloshinski …


Overcoming Atmospheric Effects In Quantum Cryptography, Brian Joseph Rollick Aug 2022

Overcoming Atmospheric Effects In Quantum Cryptography, Brian Joseph Rollick

Doctoral Dissertations

Quantum Computers will have the potential to greatly assist us in problems such as searching, optimization and even drug discovery. Unfortunately, among these newfound capabilities is one which allows one to break RSA encryption in orders of magnitude less time. One promising countermeasure to secure our communication today and in the future is the one time pad, although it is very difficult to generate and distribute. Quantum Key Distribution offers a practical method for two authenticated parties to generate a key. Whereby the parties, Alice and Bob, share quantum states and use physical laws to place an upper bound on …


Semi-Classical Theories Of Quantum Magnets, Hao Zhang Aug 2022

Semi-Classical Theories Of Quantum Magnets, Hao Zhang

Doctoral Dissertations

Recent progress in magnetism has been driven by embracing the complexity associated with entangled spin, orbital, and lattice degrees of freedom and by understanding the emergent quantum behaviors of magnetic systems. Over the past decades, intense efforts have been devoted to “extreme quantum materials” comprising low-dimensional lattices of spin S = 1/2 degrees of freedom, that are candidates to host quantum spin liquid phases with no classical counterpart. Finite-spin (S ≥ 1) systems that exhibit ground states with short-ranged entanglement have not been the center of much attention because they are expected to behave semi-classically. However, as we will demonstrate …


How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge Aug 2022

How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge

Doctoral Dissertations

Associating polymer is a special kind of polymer possessing transient reversible bonds in addition to the conventional covalent bonds. The reversible bonds provide unique dynamics and fascinating viscoelastic properties, resulting in attractive applications for these polymers, such as self-healing and shape memory materials. Despite many years of studies, the understanding of dynamics of polymers with reversible bonds, especially on molecular level, is still in the rudimentary stage, preventing the rational design of the potential novel functional materials based on associating polymers. In this dissertation, we provide a detailed and quantitative understanding of the dynamics and viscoelastic properties of associating polymers. …


Quantum Computational Simulations For Condensed Matter Systems, Trevor Alan Keen Aug 2022

Quantum Computational Simulations For Condensed Matter Systems, Trevor Alan Keen

Doctoral Dissertations

In condensed matter physics, and especially in the study of strongly correlated electron systems, numerical simulation techniques are crucial to determine the properties of the system including interesting phases of matter that arise from electron-electron interactions. Many of these interesting phases of matter, including but not limited to Mott-insulating materials and possibly high-temperature superconducting systems, can be modeled by the Hubbard model. Although it is one of the simplest models to include electron-electron interactions, it cannot be solved analytically in more than one dimension and thus numerical techniques must be employed. Although there have been great strides in classical numerical …


Numerical Studies Of Correlated Topological Systems, Rahul Soni Aug 2022

Numerical Studies Of Correlated Topological Systems, Rahul Soni

Doctoral Dissertations

In this thesis, we study the interplay of Hubbard U correlation and topological effects in two different bipartite lattices: the dice and the Lieb lattices. Both these lattices are unique as they contain a flat energy band at E = 0, even in the absence of Coulombic interaction. When interactions are introduced both these lattices display an unexpected multitude of topological phases in our U -λ phase diagram, where λ is the spin-orbit coupling strength. We also study ribbons of the dice lattice and observed that they qualitative display all properties of their two-dimensional counterpart. This includes flat bands near …


Improving Sensitivities In 0𝒗ββ Decay Searches By Utilizing Pen As A Structural Scintillating Material, Brennan Theresa Hackett Aug 2022

Improving Sensitivities In 0𝒗ββ Decay Searches By Utilizing Pen As A Structural Scintillating Material, Brennan Theresa Hackett

Doctoral Dissertations

Neutrinoless double beta decay, 0nbb is currently the only experimental test to unambiguously determine the majorana nature of the neutrino. There is a large international effort to measure 0nbb decay, with several detector technologies being pursued. This dissertation will consider the LEGEND experiment (Large Enriched Germanium Experiment for Neutrinoless bb Decay), an international effort to measure 0nbb decay with 76Ge as both the target isotope and the detecting material.

LEGEND has a 200 kg stage and a 1000 kg stage, each requiring extremely low levels of background radiation at Qbb (E = 2.039 MeV). These ultra-low background levels …


Measurement Of Jet Constituent Yields In Pb-Pb Collisions At √Snn = 5.02 Tev Using The Alice Detector, Charles P. Hughes Aug 2022

Measurement Of Jet Constituent Yields In Pb-Pb Collisions At √Snn = 5.02 Tev Using The Alice Detector, Charles P. Hughes

Doctoral Dissertations

Hard partonic scatterings serve as an important probe of quark-gluon-plasma (QGP) properties. The properties of jets and their constituents can provide a tool for understanding the partonic energy loss mechanisms. Low momentum jets offer a unique window into partonic energy loss because they reconstruct the partons which have lost a significant amount of energy to the QGP medium. The main difficulty in studying low momentum jets in heavy ion collisions is the presence of a significant uncorrelated background of low momentum hadrons from soft processes. One way to deal with this background is to use jet- hadron correlations to fit …


Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss Aug 2022

Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss

Doctoral Dissertations

Techniques such as classical molecular dynamics [MD] simulation provide ready access to the thermodynamic data of model material systems. However, the calculation of the Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of extracting accurate values of the excess entropy from MD simulation data. Thermodynamic integration, a common technique for the calculation of entropy requires numerous simulations across a range of temperatures. Alternative approaches to the direct calculation of entropy based on functionals of pair correlation functions [PCF] have been developed over the years. This work builds upon the functional approach tradition by extending …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


A Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Evan Habbershaw, Steven M. Wise Jul 2022

A Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Evan Habbershaw, Steven M. Wise

Faculty Publications and Other Works -- Mathematics

In this report we review some preliminary work on the numerical solution of BGK-type kinetic equations of particle transport. Such equations model the motion of fluid particles via a density field when the kinetic theory of rarefied gases must be used in place of the continuum limit Navier-Stokes and Euler equations. The BGK-type equations describe the fluid in terms of phase space variables, and, in three space dimensions, require 6 independent phase-space variables (3 for space and 3 for velocity) for accurate simulation. This requires sophisticated numerical algorithms and efficient code to realize predictions over desired space and time scales. …


Liquid-Liquid Transition In Ionic Liquids, Matthew Albert Harris May 2022

Liquid-Liquid Transition In Ionic Liquids, Matthew Albert Harris

Doctoral Dissertations

The properties of liquids have been linked to the existence of the liquid-liquid transition (LLT), a first-order thermodynamic transition from one liquid phase to another in a single- component liquid. LLT is fundamental to the understanding of the liquid state and has been theorized to manifest from a two-state feature of local order in the liquid. LLT has been reported in a variety of liquids with computer simulations comprising the bulk of the evidence. Experimental evidence for LLT remains controversial because it frequently manifests in the supercooled state, obscured by crystallization. In this dissertation, evidence is presented revealing LLT in …


Beta-Delayed Neutron Emission Spectroscopy In The 78ni Region And Development Of Yso-Based Implantation Detector, Maninder Singh May 2022

Beta-Delayed Neutron Emission Spectroscopy In The 78ni Region And Development Of Yso-Based Implantation Detector, Maninder Singh

Doctoral Dissertations

Decays of Cu isotopes provide a laboratory to study the properties for nearly doubly-magic nuclei with a significant neutron excess which are also relevant for the r-process models. The beta-decay properties of doubly-magic 78Ni (N=50) are imprinted in the neighboring Cu decay, nuclei with a single proton outside the Z=28 core. The investigated isotopes 79,80,81Cu are strong beta-delayed neutron precursors, suggesting that their decay strength distribution lies above neutron separation energies in 79,80,81Zn daughters.

For decay studies, a segmented scintillator YSO (Y2SiO5 : Ce doped) based implantation detector was developed at the University of …


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover May 2022

Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover

Doctoral Dissertations

A self-consistent phase space distribution is a charged particle beam in which the electric field has a linear dependence on the particle coordinates, and in which the linearity of the electric field is conserved as the beam is transported through arbitrary linear focusing fields. These features could increase the possible beam intensity in a circular accelerator by minimizing/eliminating the space charge tune shift/spread. Additionally, the uniform density of known self-consistent distributions would be ideal for fixed-target applications. Finally, certain self-consistent distributions can be flattened by exploiting the relationships between their phases space coordinates and would therefore be useful in a …


The Upgraded Measurement Of The Neutron Lifetime Using The In-Beam Method, Jimmy P. Caylor May 2022

The Upgraded Measurement Of The Neutron Lifetime Using The In-Beam Method, Jimmy P. Caylor

Doctoral Dissertations

Precision measurements of neutron beta decay can provide answers to some of the most fundamental questions in particle physics, astrophysics and cosmology. Neutron beta decay is the simplest semi-leptonic decay; therefore, it provides a clean test of the charged current sector of the Standard Model (SM). A precise measurement of the neutron lifetime and λ, the ratio of axial vector and vector coupling constants of the weak interaction, allows for a determination of the Cabibbo-Kobayashi-Moskawa (CKM) matrix element Vud that is free from nuclear structure effects. The SM predicts that the CKM matrix is unitary; therefore, the measurement of …


Emergent Phenomenon In Jeff=1/2 Iridate, Junyi Yang May 2022

Emergent Phenomenon In Jeff=1/2 Iridate, Junyi Yang

Doctoral Dissertations

Recent work on various quantum materials has led to fruitful result including unconventional magnetic states, topological properties, and exotic emergent phenomenon. High Tc superconductivity is one of the prominent properties discovered in quantum materials like strong correlated systems. Though the efforts on understanding this exotic behavior have lasted for years, the mechanism remains elusive owing to the many-body nature of the system and the research scope limitation within cuprates. Recent unravel of Jeff=1/2 state in the iridate square lattice offers alternative to study the complicated many body physics and potentially achieve high Tc superconductivity. In addition, …


Measurement Of Neutrino-Induced Neutron Production In Lead, Brandon J. Becker May 2022

Measurement Of Neutrino-Induced Neutron Production In Lead, Brandon J. Becker

Doctoral Dissertations

The COHERENT Collaboration is an experimental effort to make the first measurement of coherent elastic neutrino-nucleus scattering (CE𝜈NS). The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory provides an intense, timed source of neutrinos from the decay of pions and muons produced during the spallation of mercury by 1 GeV protons generated in a particle accelerator. COHERENT seeks to make an unambiguous measurement by using a variety of low-threshold detectors capable of measuring the low-energy nuclear recoils resulting from CE𝜈NS interactions. This already challenging task is further complicated with the presence of backgrounds. Consequently, we must seek to reduce …


Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys May 2022

Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys

Doctoral Dissertations

The modeling and prediction of quantum mechanical phenomena is key to the continued development of chemical, material, and information sciences. However, classical computers are fundamentally limited in their ability to model most quantum effects. An alternative route is through quantum simulation, where a programmable quantum device is used to emulate the phenomena of an otherwise distinct physical system. Unfortunately, there are a number of challenges preventing the widespread application of quantum simulation arising from the imperfect construction and operation of quantum simulators. Mitigating or eliminating deleterious effects is critical for using quantum simulation for scientific discovery. This dissertation develops strategies …


Study Of One-Nucleon Transfer Reactions, Jerome Mathew Kovoor May 2022

Study Of One-Nucleon Transfer Reactions, Jerome Mathew Kovoor

Doctoral Dissertations

The structure of nuclei away from the line of stability and near the driplines in the nuclear chart has been of huge interest since the arrival of radioactive ion beam facilities. The properties of nuclei evolve as a function of proton and neutron numbers and understanding the mechanisms behind this is one of the keys to explaining the strong nuclear force. Single-nucleon transfer reactions using deuteron targets are powerful probes of nuclear structure when the emitted proton or neutron is measured with high fidelity.

A variety of structure phenomena are observed in the beryllium isotopes marking them particularly attractive for …


A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong May 2022

A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong

Doctoral Dissertations

This work presents the development of a high-rate 6Li-based pixelated neutron detector for neutron reflectometry instruments at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. The current detector technology falls short on the instrument requirements, particularly on the counting rate capability. This detector was designed specifically to overcome the limitation in counting rate by having a fully pixelated design from neutron conversion layer to photodetector and readout system. For the neutron converting layer, a 6Li-based neutron scintillator was used. Each scintillator element was coupled to a photodetector, in this case, a silicon photomultiplier (SiPM). The output of each SiPM …


Meta-Heuristic Optimization Techniques For The Production Of Medical Isotopes Through Special Target Design, Cameron Ian Salyer May 2022

Meta-Heuristic Optimization Techniques For The Production Of Medical Isotopes Through Special Target Design, Cameron Ian Salyer

Masters Theses

Medical isotopes are used for a variety of different diagnostic and therapeutic purposes Ruth (2008). Due to recent newly discovered applications, their production has become rapidly more scarce than ever before Charlton (2019). Therefore, more efficient and less time consuming methods are of interest for not only the industry’s demand, but for the individuals who require radio-isotope procedures. Currently, the primary source of most medical isotopes used today are provided by reactor and cyclotron irradiation techniques, followed by supplemental radio-chemical separations Ruth (2008). Up until this point, target designs have been optimized by experience, back of the envelope calculations, and …